

NEETRAC NEWS

Volume 78 • December 2022

In This Issue...

Baseline Projects Recently Completed New NEETRAC Staff Member Upcoming Board Meeting Dates

LEADERSHIP TEAM

Rick Hartlein

Interim NEETRAC Director rick.hartlein@neetrac.gatech.edu

Joe Goldenburg

Associate Director joe.goldenburg@neetrac.gatech.edu

Caryn Riley

Associate Director caryn.riley@neetrac.gatech.edu

Laquita Wright

Director of Business Operations laquita.wright@neetrac.gatech.edu

Dylan Summer

Quality Resource Manager dylan.summer@neetrac.gatech.edu

Baseline Project Recently Completed

The following Baseline project closeouts were presented at the September 2022 Management Board Meeting. The reports will be finalized and distributed to eligible Members in the coming months. In the meantime, please contact the project PI listed below for more information.

Survival Performance of New and Aged Temporary Protective Grounds

Baseline Project Number 19-151 PI: J.C. Hernandez, jean.hernandez@neetrac.gatech.edu

Temporary Protective Grounds (TPGs) play a critical role in crew safety by establishing an equipotential safe-work-zone when they are deployed and, more importantly, conducting any unexpected fault current to ground while crew work is conducted. They also safeguard the crew from high voltages that could be induced or applied due to equipment failure, operational errors, and/or back-feeds.

TPGs have to be properly sized and assembled for the application under consideration. This involves considering variables such as system operating voltage and the highest possible fault current level. In particular, the current magnitude and duration of the fault are critical factors in sizing the TPGs since

they must be capable of carrying the maximum available fault current for the duration of the fault while keeping the voltage to the lowest possible level.

To guarantee proper TPG performance, TPG designs are tested and qualified on new assemblies using symmetrical currents or asymmetrical currents (H-rating). ASTM F855 added the H-rating category to the standard in the 2019 revisions. TPGs deployed in the field are more likely to see asymmetric fault currents. The asymmetric fault currents consist of rms ac and dc offset current components. The rms ac component is determined by the sub-transient impedances inherent to rotating machinery, transformers, and lines. The dc offset component is determined by the reactance to resistance (X/R) ratio at the fault location looking back into the power system and the instant of fault initiation in the voltage waveform.

Baseline Project Recently Completed - Cont'd

TPGs are generally rated by their ultimate rating capacity. This capacity is a calculated maximum current that a TPG is capable of conducting for a pre-established time without fusing or melting. For asymmetric fault currents, the additional heating from the dc current component may decrease TPG expected rated performance. Therefore, the main goal of this project was to assess the survival performance of new and aged TPGs when they are tested using asymmetric fault currents.

A balanced set of new and aged TPGs were tested. All of the samples were provided by NEETRAC Members and included a variety of cable sizes, lengths, and clamp types. Correlations between diagnostic measurements, such as dc resistance measurements and TPG performance, were established and analyzed. This work generated a better understanding of the usefulness of such diagnostic tools for TPG condition assessment.

Understanding the IEEE Entity Standards Development Process

Baseline Project Number 20-156

PI: Joe Goldenburg, joe.goldenburg@neetrac.gatech.edu


This project explored IEEE's relatively new entity standards development process. The IEEE Standards Association describes their Entity membership as a way for "companies to engage and influence technology development to ensure their business interests are heard and represented". NEETRAC found several issues with some existing entity standards, including conflicts with requirements in North America for the construction, maintenance, and operations of overhead lines. NEETRAC developed a presentation that details the concerns that Management Board representatives and Technical Advisors have with the entity standards development process. The presentation includes information on how to tell whether a standard was developed using the Entity or Individual process. It has been delivered at three industry forums and two NEETRAC Members standards engineering groups. To obtain a copy, please contact Joe Goldenburg at 404.675.1858.

Performance Relationship Between Enclosure Paint Standards and the Real World

Baseline Project Number 21-064

PI: Tristen Cline, tristan.cline@neetrac.gatech.edu

IEEE transformer enclosure standards use a Simulated Corrosive Atmospheric Breakdown (SCAB) test procedure from GMW 15288 to evaluate enclosure coatings. NEETRAC Members were concerned about how well the SCAB test reflects real world failure mechanisms, as well as its repeatability across test labs. NEETRAC reviewed forty-eight articles and fifteen standards relevant to this topic. In consultation with the project's Technical Advisors, NEETRAC determined that alternative test methods have a higher correlation to service environments. The NEETRAC Management Board authorized NEETRAC to present the project findings to relevant IEEE corrosion mitigation working groups. For more information, please contact Tristen Cline at 404.675.1815.

New NEETRAC Staff Member

Please join us in welcoming our newest staff member, Diana Ramirez-Wong. Diana joined NEETRAC in September 2022. She has 5 years of experience in polymer compounding for cable manufacturers and a total of 12 years of lab research experience covering broad aspects of polymer chemistry, from synthesis to self-assembly, processing, and characterization.

Diana earned a B.Sc. in Chemical Engineering in 2006 from Durango's Technological Institute (MX),

and her interest in materials science motivated her to slightly change paths by getting a M. Sc. degree in 2009 from CINVESTAV and later moving to Europe. Thanks to an ERASMUS grant, she received the Ph.D. in Physics and Chemistry of Materials from a joint program between Université Catholique de Louvain (BE) and Université Pierre-et-Marie-Curie (FR) in 2014.

Over the years, she has been part of interdisciplinary scientific and engineering teams, delivering a dozen of high level peer reviewed publications as well as a few cable compound products. Complementary to the projects, Diana has contributed to mentoring activities for students in academia and with small teams of technicians in the industry.

Diana is eager to learn, expand her knowledge of the electric grid, and apply her materials background at NEETRAC.

NEETRAC Campus

5351 Kennedy Road Forest Park, GA 30297

Telephone: 404-675-1875

Fax: 404-675-1885

Management Board Meetings

The next three Management Board meetings have been scheduled for the following dates:

January 25 - 26, 2023 May 17 - 18, 2023 September 19 - 20, 2023

For details, please visit the Member Section of the NEETRAC website at www.neetrac.gatech.edu.

2022/2023 NEETRAC Member Management Board Representatives

1. Aluma-Form	Pete Landsgaard	20. Okonite	
2. Ameren	•	21. Pacific Gas & Electric	. Jim Gill
American Electric Power	. Jim Salerno	22. PPL Corporation	Adam Eshleman
4. BC Hydro	Hudson Giesbrecht	23. Prolec GE	. Carlos Gaytan
5. Borealis Compounds, Inc	Susan Song	24. Prysmian Group	.Jared Weitzel
6. Conductores Monterrey	Raul Garcia	25. Public Service Electric & Gas	. Ed Gray
7. Consolidated Edison	. Frank Doherty	26. Rauckman Utility Products	Jim Rauckman
8. Dominion Energy	Liz Sullivan	27. S&C Electric	Tim Qualheim
9. Dow	. Paul Caronia	28. San Diego Gas & Electric	. Kevin Galloway
10.DTE Energy	.Abdalla Sadoon	29. Slacan Industries	lan Pollock
11.Duke Energy	Chris Fletcher	30. Smart Wires	. Haroon Inam
12.Eaton	. Alan Yerges	31. Southern California Edison	Alan Kasanow
13.Exelon	. Lisa Perrone	32. Southern Company	Michael Pearman
14.FirstEnergy	Randy Coleman	33. Southern States, LLC	. Steve Fan
15.Gresco Utility Supply	Brad Schafer	34. Southwire Company	. Yuhsin Hawig
16.Hubbell Power Systems	Charles Worthington	35. Tacoma Power	Joe Rempe
17.LS Cable & System	Tim West	36. TE Connectivity	Brian Ayres
18.Nova Scotia Power	Jim McFadgen	37. TVA	
19.NRECA	Reed Cooper	38. WEC Energy Group	-