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EXECUTIVE SUMMARY 

 
What has changed in the industry? 
 
Advanced Metering Infrastructure (AMI) has been deployed at over 70% of 
rural electric cooperatives, and this new data source offers opportunities for 
valuable applications beyond billing. NRECA has developed open source 
computer software to perform anomaly detection and dynamic power flow 
analysis with AMI data for cooperatives. Dynamic power flow analysis is an 
important area of development because it is able to model the time-varying 
behavior of emerging distributed energy resources. 

 
 
 

What is the impact on cooperatives? 
 
Cooperatives have the ability to get more value out of their AMI data by 
analyzing it for anomalies including faults, damaged meters, or energy theft.  
Finding these problems quickly can help cooperatives save money and 
maintain high member satisfaction. 

 
 
 

What do cooperatives need to know or do about it?  
 
Cooperatives need to consider how they are using their AMI data and if 
dynamic models provide an avenue for more value.  In addition to the 
applications discussed in this paper, AMI data can also be used for asset 
monitoring, outage management, power quality assessment, voltage 
optimization, demand side management, minimizing energy theft, and better 
loss estimation. 
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I. INTRODUCTION  
 
 Grid modernization is a term commonly used to refer to the growth of distributed 
energy resources and networked controls on the electric system. One of the 
technologies central to this modernization is Advanced Metering Infrastructure (AMI). 
AMI deployment is increasing throughout the United States, and co-ops have the 
highest percentage of installations in the country compared to investor-owned and 
municipal utilities [1], [2]. More than 70 percent of the cooperatives in the U.S. are 
using AMI for its numerous benefits including remote meter reading, improved outage 
management, support for dynamic rate structures, distribution generation (DG) 
monitoring, improved load forecasting accuracy, and measurement and verification of 
demand side management programs [3],[4]. 
 

The data provided by meter readings has increased considerably since the end of the 
18th century. At first, conventional meters were read once a month in-person to 
determine the electricity usage. Then, as technology progressed advanced meter read 
(AMR) systems provided remote energy readings and reduced the cost of billing. 
Recently, advanced meter infrastructure (AMI) provides more granular hourly (or sub-
hourly) reads, increasing the amount of data to be transmitted and stored [5]. These 
data volumes, although historically not common in the electric utility industry, are not 
a significant challenge to modern information technology infrastructure. Among rural 
electric cooperatives, the largest is Pedernales which serves approximately 300,000 
meters. If each meter is transmitting data every 15 minutes, the daily data volume is 
approximately 1 GB/day with a sustained DB insertion rate of 12 Kbps. At the current 
prices for storage available on demand from cloud hosting providers, supporting a 
data workload of that volume would cost less than $2,700 annually [6], a small 
expense for a utility. Using purchased instead of on-demand IT infrastructure would 
lower that amount significantly. 

 
The data collected by the meters can be sent through one of multiple channels, 

including power line carrier (PLC), broadband over power lines (BPL), copper or optical 
fiber, or wireless radio frequency (RF). The rate of transmitting data depends on the 
communications medium, and bandwidth limits there constrain how much interval 
data can be retrieved by the utility for analysis. Many cooperatives use PLC because it 
is well suited for remote, sparsely populated service territories due to being the lowest 
cost medium for a given network size [4],[5]. 

 
One of the major problems still facing AMI data research is the lack of a common 

data format for AMI data. Without a widely adopted standard, sharing data generated 
by different vendors’ products is very challenging and stymies potential research 
efforts. The ANSI C12.19 standard used in AMR meters could be a good candidate for 
developing a matching standard for AMI data, but support by vendors is incomplete 
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[5]. In the absence of such a standard, in this work we defined our own simple 
standard based on a comma separated value format. 

 
Once the utility has acquired AMI data, they can use a Meter Data Management 

System (MDMS) or other database to store and manage AMI data. The main 
advantage of using an MDMS is the functionality for validating, editing, and estimating 
(VEE) AMI data for billing and other purposes [4]-[7].  Many new MDMS capabilities 
are emerging including (i) aggregating data using “virtual meters” (ii) facilitating 
information sharing between generation and transmission (G&T) and distribution 
utilities, (iii) managing direct load control events.  

 
This paper describes the developed open source computer software to perform 

anomaly detection and dynamic power flow analysis with AMI data for the 
cooperatives. The rest of the paper is organized as follows:  

• Section II explains the application of AMI data to anomaly detection model.  

• Section III explains how we applied AMI data to perform dynamic power flow 
simulations using GridLAB-D.  

• Section IV discusses further potential applications such as theft detection and 
technical losses estimation.  

• Section V concludes the paper and provides ideas for future work. 

 
II. APPLYING AMI DATA TO ANOMALY DETECTION 
 

We define an anomaly as a period of unusual energy consumption when compared 
with the normal (average) usage for a set period of time (e.g., a month). An anomaly 
can be quantified by measuring its deviation from the average during that time, and 
can be caused by bad data, damaged or malfunctioning meters, faults, or energy theft. 
In this section, we describe the software we developed for detecting anomalies in AMI 
datasets. 

 
In the literature, there has not been a particular work that examines anomaly 

detection on its own. Research related to anomaly detection has been done as part of 
non-technical losses (NTL) estimation and energy theft detection.  A key area of 
research focuses on the problem of data analytics in MDMS for energy theft detection. 
Even though some vendors have been offering theft detection functionality, the 
methodologies are unavailable publicly. Reference [8] examines theft detection 
through a threat model and with higher resolution data. The key contributions of [8] 
are: (i) considering an attacker model for theft detection in MDMS, (ii) developing a 
metric that considers the classification accuracy of the theft detector, and (iii) utilizing 
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real AMI data to evaluate the performance of the theft detection by deploying an 
autoregressive moving average (ARMA) detector.  

 
Excluding and quantifying NTL from TL has been an important topic in AMI analytics 

research. Reference [7] uses a state estimation methodology to estimate consumption 
at the distribution transformer (DT) to detect and quantify NTL. It uses the data of 
individual consumers and the aggregated data at the DT to localize the usage anomaly. 
The proposed algorithm has two main phases. First, it detects the type of anomaly or 
meter fault. Second, it finds the location of the customer with either the suspected 
theft or low voltage level. The results show the usefulness of using the distribution 
state estimation in the localization of an anomaly. Lastly, the analysis of the variance 
is important to detect individual anomalies. Reference [9] examines the error source 
and the methodologies to distinguish NTL from the total losses in a microgrid using 
two approaches, model-based and data-based. The model-based uses optimal power 
flow (OPF) from the Gridlab-D simulator. The data-based model uses a pre-trained 
regression model. The paper also proposes the localization of NTL at the distribution 
aggregators for future work [9]. 

 
The electricity consumption of a given residential or commercial consumer follows a 

highly predictable energy usage pattern that can be represented statistically [10]. 
Thus, relating unusual consumption to the average consumption is a simple, 
straightforward and practical way to detect irregularities in energy consumption. Our 
work uses this technique to detect anomalies from a specific meter. The model input 
consists of AMI data for multiple meters, the minimum energy deviation from the 
average to detect as a percentage (threshold), and the minimum deviation length to 
detect in hours as shown in Fig.1. 

 

 
Fig. 1. Inputs of the anomaly detection model  
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Fig. 2. Anomaly detection algorithm  
 

 
Fig.2 explains how the code works to detect anomalies for multiple meters. Let N be 

the number of meters, d the deviation length as chosen by the user. For each meter 
the average consumption is calculated as 𝜇𝜇 = 1

𝑇𝑇
∑ 𝐸𝐸(𝑡𝑡)𝑇𝑇
𝑡𝑡 , where T is the period under 

consideration (e.g., a month), E(t) is the energy consumption in MWh, and t is the 
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time step (e.g., an hour, or 15 minutes). The full open source code for the model is 
available on Github [11]. 
 

Figures 3 and 4 show the outputs of the model. Fig. 3 shows the record of all the 
anomalies. Note that one meter could have multiple anomalies during the period of 
consideration. Fig. 4 allows the user to choose any of the meters with an anomaly 
from a dropdown menu and observe their load profile. 

 

 
 

Fig. 3. Detected anomalies for each meter 
 
 

 
 

Fig. 4. Consumption of a particular meter where an anomaly was detected 
 
 

Anomalies could be due to a fault, a damaged meter, or energy theft, and fixing the 
problem achieves both monetary and non-monetary benefits. Non-monetary benefits, 
such as consumer engagement and satisfaction–and in the case of a fault, consumer 

Project Number and Date 
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safety–are important to utilities. Monetary benefits of anomaly detection are also 
important and can be calculated more specifically. For energy theft, the value is 
avoiding lost sales. Lost sales due to an energy theft can be calculated as 𝐿𝐿𝑆𝑆 = 𝛼𝛼 ×
𝜋𝜋/100 where 𝐿𝐿𝑆𝑆 is the monthly lost sales in dollars due to energy theft, 𝛼𝛼 is the energy 
deviation percentage due to theft, and 𝜋𝜋 is the average monthly bill of that particular 
customer. For example, the average monthly bill of a customer in the United States is 
$120 according to the U.S. Energy Information Administration. In the test dataset of a 
small sample of meters we collected from a rural electric cooperative, we were able to 
find 10 anomalies. Assuming these are all non-technical losses and the average 
amount lost is 50 percent, the total revenue lost was $600 per month. 

 
An anomaly caused by a damaged meter is another straight-forward value 

proposition. A damaged meter will read zero consumption, meaning the utility is losing 
out on all energy sales to that consumer. Thus, replacing the meter with a new one is 
much less expensive than 100 percent lost sale for several months. Detecting multiple 
anomalies at a particular location can also identify failing distribution equipment. 

 
 

III. APPLYING AMI DATA TO DYNAMIC POWER FLOW SIMULATION 
 

Static power flow analytical methods and tools, at both the transmission and 
distribution levels, lack the ability to model the time-varying behavior of emerging 
distributed energy resources [12]-[14]. Dynamic power flow simulations (DPFS), also 
referred to as quasi-static time series analysis (QSTS) by some researchers, can 
model changes in power flow over time. This approach enables: (i) enhanced 
detection of voltage problems within the distribution grid, (ii) development of dispatch 
strategies for energy storage, (iii) assessing distribution system problems such as 
theft or non-technical losses, (iv) modeling the behavior or load tap changers, voltage 
regulators, and switched capacitor banks, and (v) quantifying problem duration [11]. 

 
DPFS have been used in studies for integrating solar PV on the distribution grid. The 

study by Broderick et al. [12] used DPFS to quantify (i) the variation in PV impact 
based on time, feeder type and point of interconnection and (ii) the variable power 
output impacts on the operations of voltage regulators, capacitor banks, and switches, 
which can results in flicker and voltage violation. Similar to [10], reference [13] 
examines the impact of solar PV integration on the IEEE 34 node distribution test 
feeder. The paper uses high temporal resolution (1 min) solar PV data for an entire 
year. The impacts investigated include the violation of the voltage level, frequency of 
the voltage regulator operation, and characteristics of the power losses in the system. 
One of the disadvantages of the study is that the load profile data was unavailable. 
Therefore, static load equal to the peak load was assumed. 
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Several tools are in development to perform DPFS. Report [14] compares three of 

the most commonly used distribution system simulators that support DPFS analysis. 
These are CYMDIST (commercially available), OpenDSS (free and open source), and 
GridLAB-D (free and open source). GridLAB-D, which is used in our work, has several 
advantages over the others including support for more powerflow solvers (Gauss-
Seidel, Newton Raphson, and Forward-backward sweep), models for capacitor bank 
control, voltage regulating transformers and many forms of distributed generation, 
and broader operating system support. GridLAB-D only supports a command-line 
interface, but NRECA has developed a graphical interface with many analytical 
enhancements, the Open Modeling Framework (OMF), available at 
https://www.omf.coop/. 
 

Dynamic simulations require historical energy consumption data for all the meters 
in the distribution feeder. There are multiple ways to generate these load profiles, 
including using SCADA data from substation and downline regulators, or using purely 
synthetic models, but one of the simplest and clearest methods is to use AMI data. We 
developed software to translate for processing AMI data and creating these load 
models [14]. In addition to Wh consumption data, we require meter ID, phase, and 
time stamp (YYYY-MM-DD HH:MM:SS) information in a comma-separated value 
format. 

 
 

IV. ADDITIONAL APPLICATIONS 
 

There are other applications that can be developed using AMI data. These include 
asset monitoring, outage management, power quality assessment, voltage 
optimization, demand side management, minimizing energy theft, and better loss 
estimation. This section explains applications that we did not implement, but will 
potentially investigate in future work. 

 
Illegal consumption of energy (energy theft) is an ongoing problem for utilities. 

Utilities are fighting back with new theft detection techniques that leverage AMI data. 
Reference [15] integrated both AMI and SCADA with state estimation methodology for 
theft detection. One of the disadvantages of the data requirements is that the method 
needs several measurements which might be challenging to obtain. The work in [16] 
depends on a statistical estimation approach to separate the technical losses and NTL 
before and after the DT. This method is similar to another method known as 
“totalizing” that calculates the mismatch between the total energy supplied by the DT 
and the sum of all legal energy consumption. 

  
The theft detection technique proposed in [17] consists of two phases. First, the 

illegal use event is identified within the low voltage distribution grid by a simple power 

https://www.omf.coop/
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imbalance test. The second is the localization at the point of connection (POC). The 
localization is based on examining the voltage error, which is the difference between 
the estimated (simulated) voltage and the measured voltage by the AMI meter. 
 

Typical distribution losses in North America are 6-10%. This percentage varies 
based on the distribution system’s topology [18]. Reference [18] proposed evaluation 
techniques employing AMI data and geographical information systems (GIS). First, 
system components information, hourly consumption at the substation and individual 
meters are collected from GIS and AMI. Second, total losses, secondary losses, and 
DT losses are calculated. This straightforward approach can have a significant impact 
in determining the time and location of losses.  

 
 

V. CONCLUSION AND FUTURE WORK 
 

AMI data has potential uses beyond just energy sales. Cooperatives are actively 
investigating how to this data to enhance their distribution systems and better serve 
their consumer members. The work described above offers two software applications 
that perform anomaly detection and distribution load modeling for dynamic power flow 
simulations.   

 
Future work to be done in this area includes:  

(i) developing a graphical user interface to the distribution load modeling code, 

(ii) implementing a theft detection,  

(iii) implementing loss estimation, and 

(iv) measuring and verifying results against a second meter data source. 
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