

To: SUNDA Project Cooperatives

From: February 3, 2015

Re: Reference Block Design for Utility Scale PV Solar System

Purpose: Provides a reference block design with simple, convenient features, which is intended to reduce field time and provides monitoring features. This is a reference design and will need to be adjusted for the particulars of a field site, including electrical string length (based on minimum site temperatures), climatic conditions (such as wind and snow loads), row spacing (based on latitude), land contours, shading, and others. Typical engineering time for such adjustment is intended to be, and historically has been, under 100 hrs for site specific modifications.

<u>What's included</u>: a cover sheet that provides a drawing sheet list, six site plans (layouts, trenching and grounding), single line diagrams, schedules, labels, partial plans for inverter pad, conduit details and stringing plans for arrays.

Design Criteria and Attributes used in creating this design:

- Maximize ground coverage ratio, expandable symmetric block
- Fixed, non-tracking design for cost effective construction and low O&M costs
- Efficient design, allows for most of the array construction to be duplicated
- Combiner box locations optimized to reduce DC conductors, avoiding jumpers or other pull boxes in unusual locations
- Equipment pad centrally located, driving reduced feeder cost and transformation local to solar inverters configurable with other variations
- Immediate transformation drives lower cost of AC MV conductors
- Access roads can be on either side
- Grounding and Surge Protection: metallic array parts, pad halo grounding, fence grounding, surge arrestors in gear
- MV switch is used as site AC disconnect, reduces pad footprint
- Racking system is ETL listed for grounding, reducing significant bonding requirements and on-site labor
- Racking has integrated wire management
- Racking design is very modular, fast to install and accessible height good for install
- AC Switchgear contains the AC bus, the step down transformer for local 120V power and the revenue meter for DAS
- Using 500kw inverters allows for a centralized electrical equipment pad
- Electrical equipment pad is conveniently accessible. Designed to provide easy service access, minimize concrete, optimize feeder stub ups, 1MW pad is cost effective and allows ability to use shared transformer.
- Expandability and flexible re-design options to meet site specific issues
- Track environmental offsets

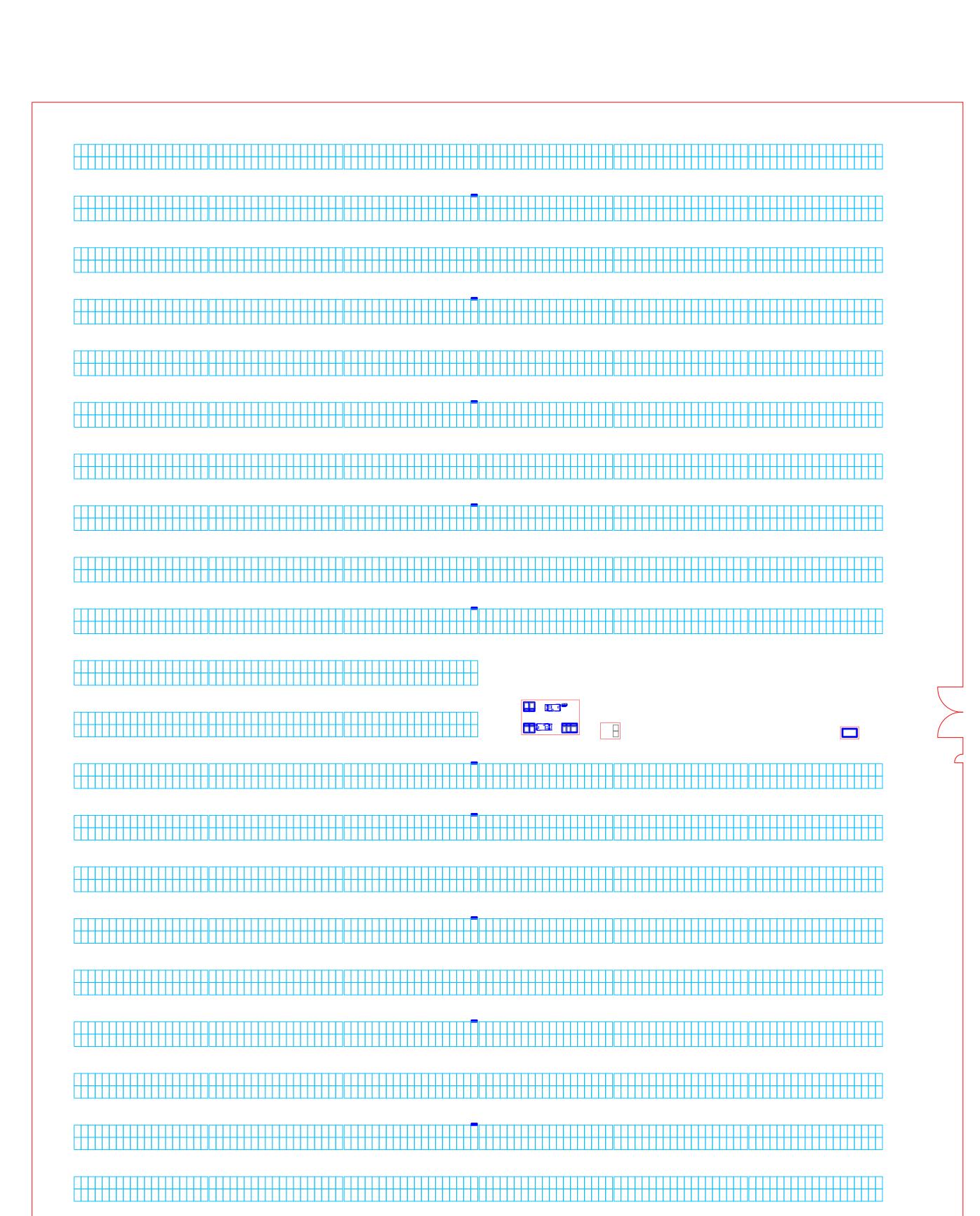
- Public view website to view performance online or any internet device
- Remotely troubleshoot and track on-site weather data
- Option features: cell-modem, online storage of data, historical data exports, monthly reporting, alarms, curtailment, fault codes and sensors (horizontal/plane of array pyranometers, wind speed/direction, humidity, ambient temp, cell temp, revenue grade meters, load or bus kw meters

DISCLAIMER

While significant effort has been made to incorporate all applicable standards and ensure good engineering and correct practice in the development of this design, and this design has been used to develop actual field deployed, utility-scale, solar PV systems, no warranty or guaranty is made on this design for its fitness, suitability, safety or applicability for any purpose. Utilities must employ a trained engineer to interpret and adjust this reference design for the specific requirements of their application.

NRECA intends for the Materials contained in this design to be useful. These Materials may, however, contain technical inaccuracies, typographical errors or other mistakes. NRECA may make corrections or other changes to these Materials at any time. NRECA and its suppliers reserve the right to make corrections, modifications, enhancements, improvements and other changes to its design, programs and services at any time without notice.

THE MATERIALS IN THIS DESIGN ARE PROVIDED "AS IS". NRECA DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THESE MATERIALS, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NONINFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.


YOU ACKNOWLEDGE AND AGREE THAT THE APPLICATION NOTES, REFERENCE DESIGNS AND OTHER SUCH DESIGN MATERIALS INCLUDED HEREIN ARE PROVIDED AS AN EXAMPLE ONLY AND THAT YOU WILL EXERCISE YOUR OWN INDEPENDENT ANALYSIS AND JUDGMENT IN YOUR USE OF THESE MATERIALS. NRECA ASSUMES NO LIABILITY FOR YOUR USE OF THESE MATERIALS OR YOUR PRODUCT DESIGNS OR ANY APPLICATION OR APPLICATION ASSISTANCE PROVIDED BY NRECA.

NRECA DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF NRECA COVERING OR RELATING TO THESE MATERIALS OR ANY COMBINATION, MACHINE, OR PROCESS TO WHICH THESE MATERIALS RELATE OR WITH WHICH THESE MATERIALS MAY BE USED.

IN NO EVENT SHALL NRECA BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO, DAMAGES RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION RESULTING FROM USE OF THIS MATERIAL OR ARISING OUT OF THE USE OR PERFORMANCE OF THE DESIGN, REGARDLESS OF WHETHER NRECA OR AN AUTHORIZED NRECA REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SUNDA REFERENCE DESIGN

1,000KWac 1,000Wdc

AC SYSTEM SIZE: 1,000 KW AC DC SYSTEM SIZE: 1,390.8 KW DC STRING SIZE: 19 MODULES 240 MODULES: 4,560 REC 305W 2 ADVANCED ENERGY 500KW

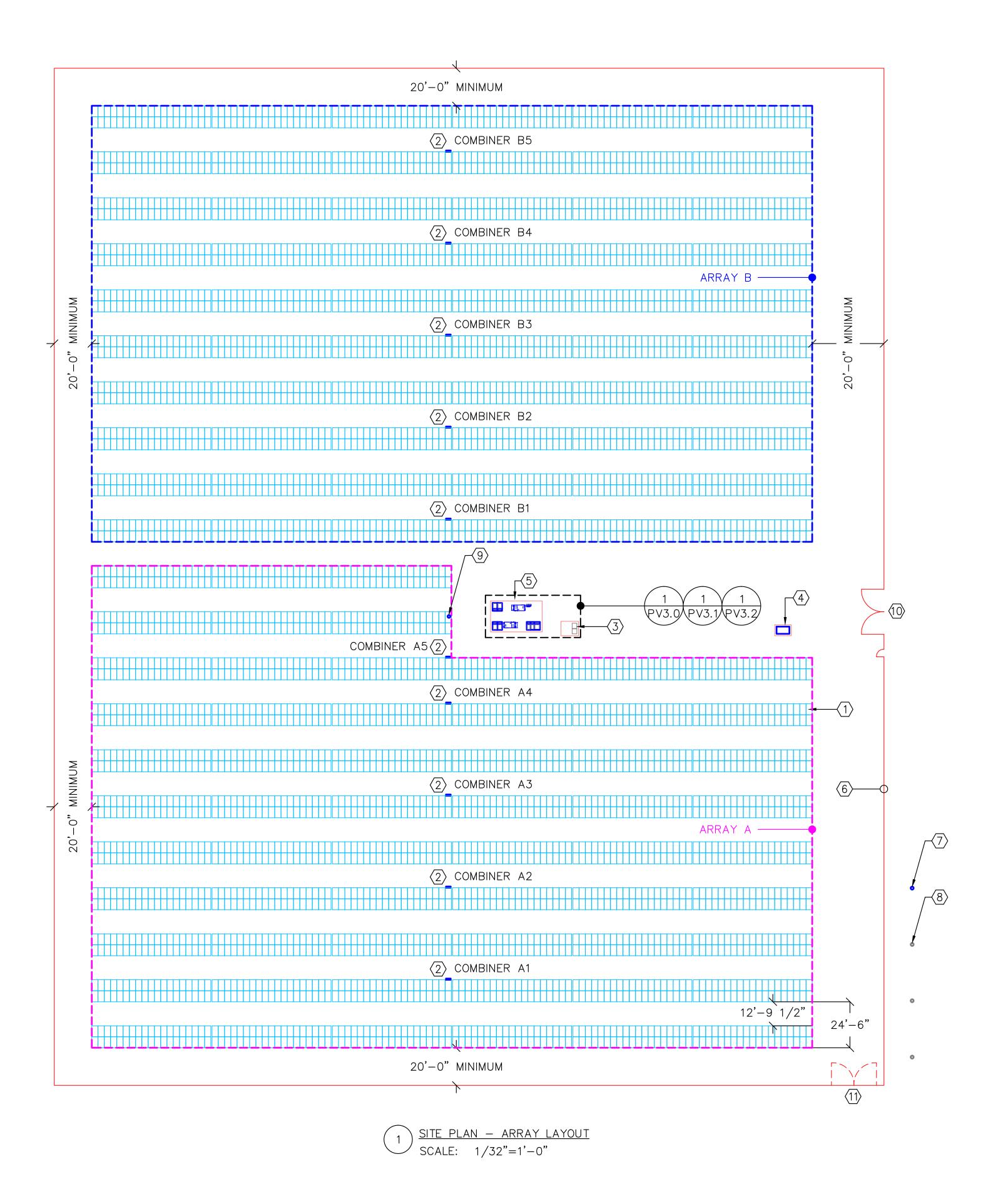
DC VOLTAGE: 1,000V AC VOLTAGE: 420V, 3¢ ARRAY TILT: 25°

RACKING: SCHLETTER FS
2 HIGH PORTRAIT X 19 WIDE

STRINGING PLAN - ARRAY B

	DRAWING SHEET LIST
PV0.1	COVER SHEET
PV1.0	SITE PLAN - ARRAY LAYOUT
PV1.1	SITE PLAN - FENCE LAYOUT
PV1.2	SITE PLAN - MEDIUM VOLTAGE ROUTING
PV1.3	SITE PLAN - COMBINER LAYOUT
PV1.4	SITE PLAN - DC ROUTING
PV1.5	SITE PLAN - ARRAY GROUNDING
PV2.0	PV SINGLE LINE DIAGRAM
PV2.1	PV SCHEDULES
PV3.0	PARTIAL PLAN - EQUIPMENT PAD DIMENSIONS
PV3.1	PARTIAL PLAN - EQUIPMENT PAD FEEDER ROUTING
PV3.2	PARTIAL PLAN - EQUIPMENT PAD GROUNDING
PV4.0	PV RISER DIAGRAM
PV4.1	FENCE GROUNDING DETAIL
PV4.2	COMBINER GROUNDING DETAIL
PV5.0	CONDUIT STUB UP DETAILS
PV5.1	CONDUIT DETAILS
PV6.0	STRINGING PLAN - ARRAY A

add, Jr., PE # 25988 56.3056 Sold Sold I 609 Heri IE SHOULD


Charles Ladd, Jr., F NC PE# 25988 919.556.3056

DESCRIPTION

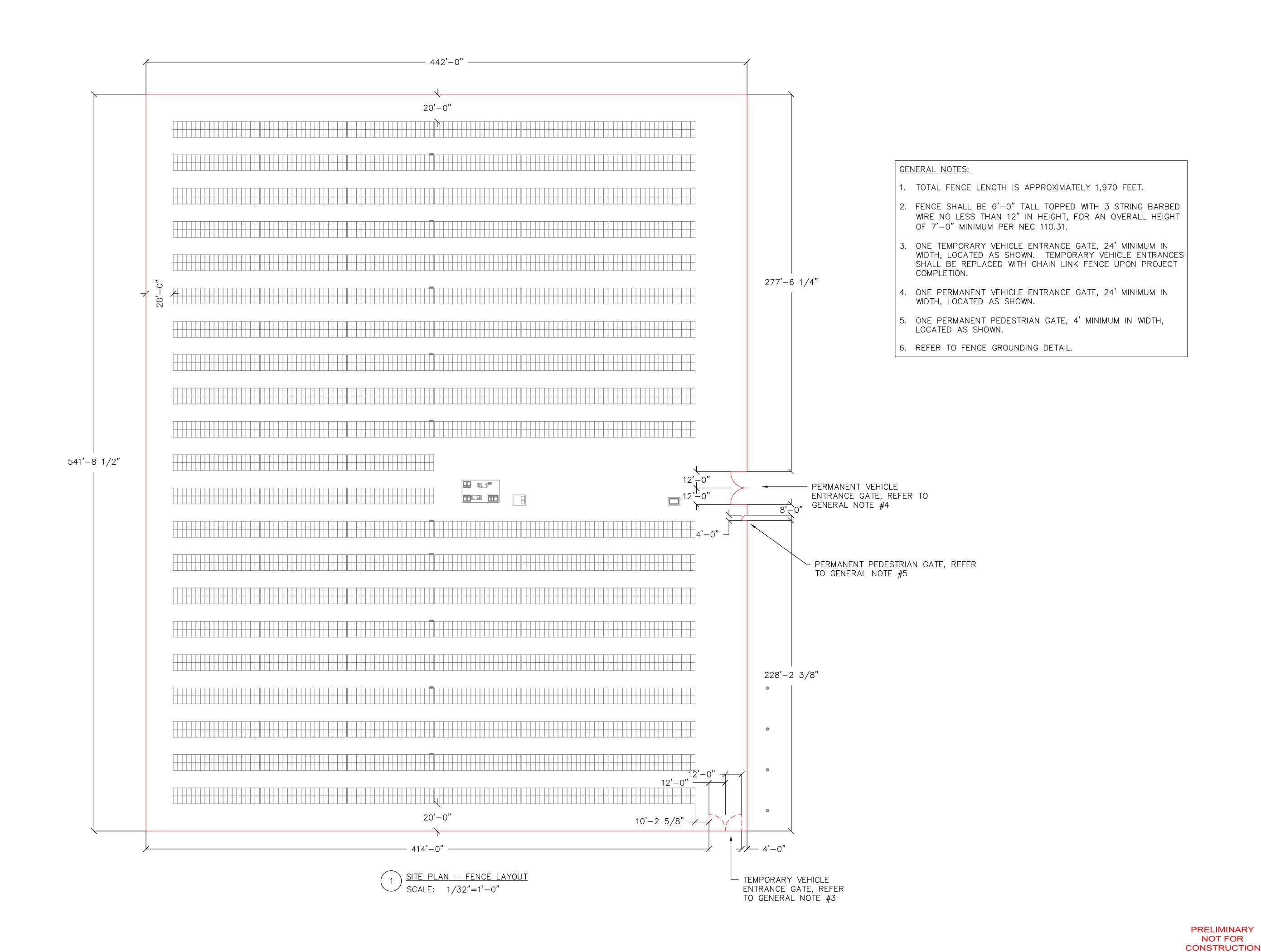
NRECA Reference Design JKW — 1,000Vdc

SUNDA REFERENCE

DATE: 02.02.2015 SHEET:

NE TYPE LEGEND	
ODULE	
ONCRETE PAD	
ENCE LINE	
ONTRACTOR PROVIDED EQUIPMENT	
XISTING/UTILTIY ROVIDED EQUIPMENT	

KEYED NOTES: (X)


- 1. PV MODULE, TYPICAL OF 4,560.
- 2. DISCONNECTING COMBINER BOX.
- 3. MEDIUM VOLTAGE TRANSFORMER.
- 4. GROUND MOUNTED MEDIUM VOLTAGE FUSED DISCONNECT SWITCH.
- 5. EQUIPMENT PAD.
- 6. FENCE LINE.
- 7. CONTRACTOR PROVIDED POLE MOUNTED COORDINATED SWITCH.
- 8. UTILITY PROVIDED POLE, POINT OF DEMARCATION.
- 9. BACK OF MODULE TEMPERATURE SENSOR.
- 10. PERMANENT GATE.
- 11. TEMPORARY GATE.

GENERAL NOTES:

- . REFER TO EQUIPMENT SCHEDULE FOR SPECIFICATION.
- 2. REFER TO SINGLE LINE DIAGRAM AND FEEDER SCHEDULE FOR SPECIFICATIONS.
- 3. PROVIDE RACKING SYSTEM AT 25° TILT. RACKING SYSTEM SHALL BE A PIER DRIVEN SYSTEM. EACH RACKING SECTION SHALL CONTAIN 2 MODULES HIGH IN PORTRAIT. HORIZONTAL DISTANCE BETWEEN RACK SECTIONS SHALL BE SPECIFIED BY MANUFACTURER. THE RACKING SYSTEM SHALL BE UL LISTED FOR GROUNDING CONTINUITY. COMPONENTS WITHIN THE RACKING SYSTEM SHALL FORM AN ELECTRICALLY BONDED UNIT AND WILL REQUIRE ADDITIONAL BONDING FROM ONE INDIVIDUAL RACK SECTION TO ADJACENT SECTIONS. MANUFACTURER SHALL PROVIDE SIGNED AND SEALED STRUCTURAL DOCUMENTATION.
- . STRINGING FEEDERS SHALL BE ROUTED IN RACKING INTEGRATED WIRE MANAGEMENT OR BELOW GRADE AS NOTED ON DC ROUTING PLAN.
- 5. COMBINER FEEDERS SHALL BE ROUTED BELOW GRADE TO EQUIPMENT PAD, REFER TO DC ROUTING PLAN.

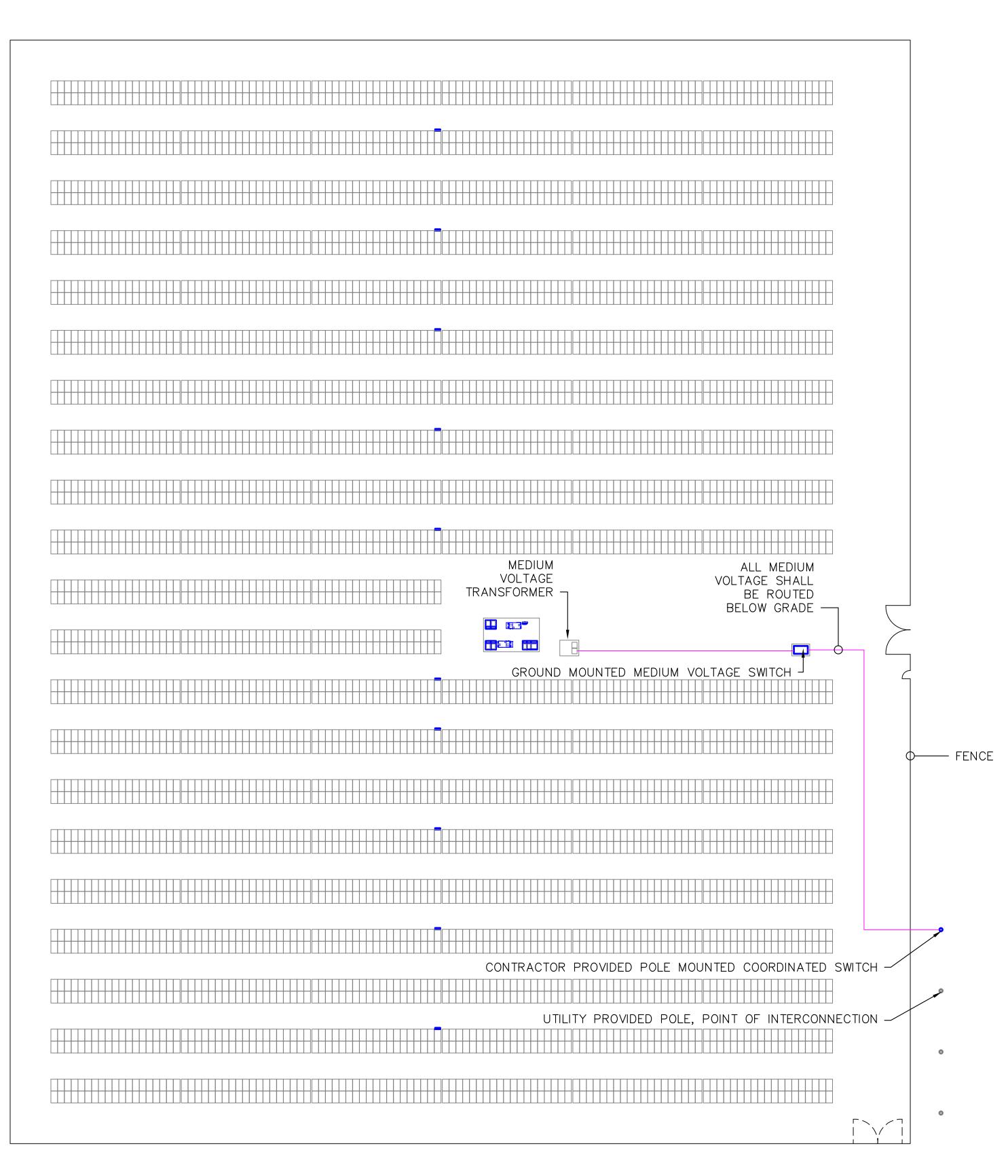
02.02.2015

SHEET:

N

Power
Solar Energy Solutions

309 Heritage Commerce Ct.
Worke Forest NC 27587


NC PE# 25988 919.556.3056 1609 THIS LINE SHOULD W MEASURE ONE INCH

TE DESCRIPTION

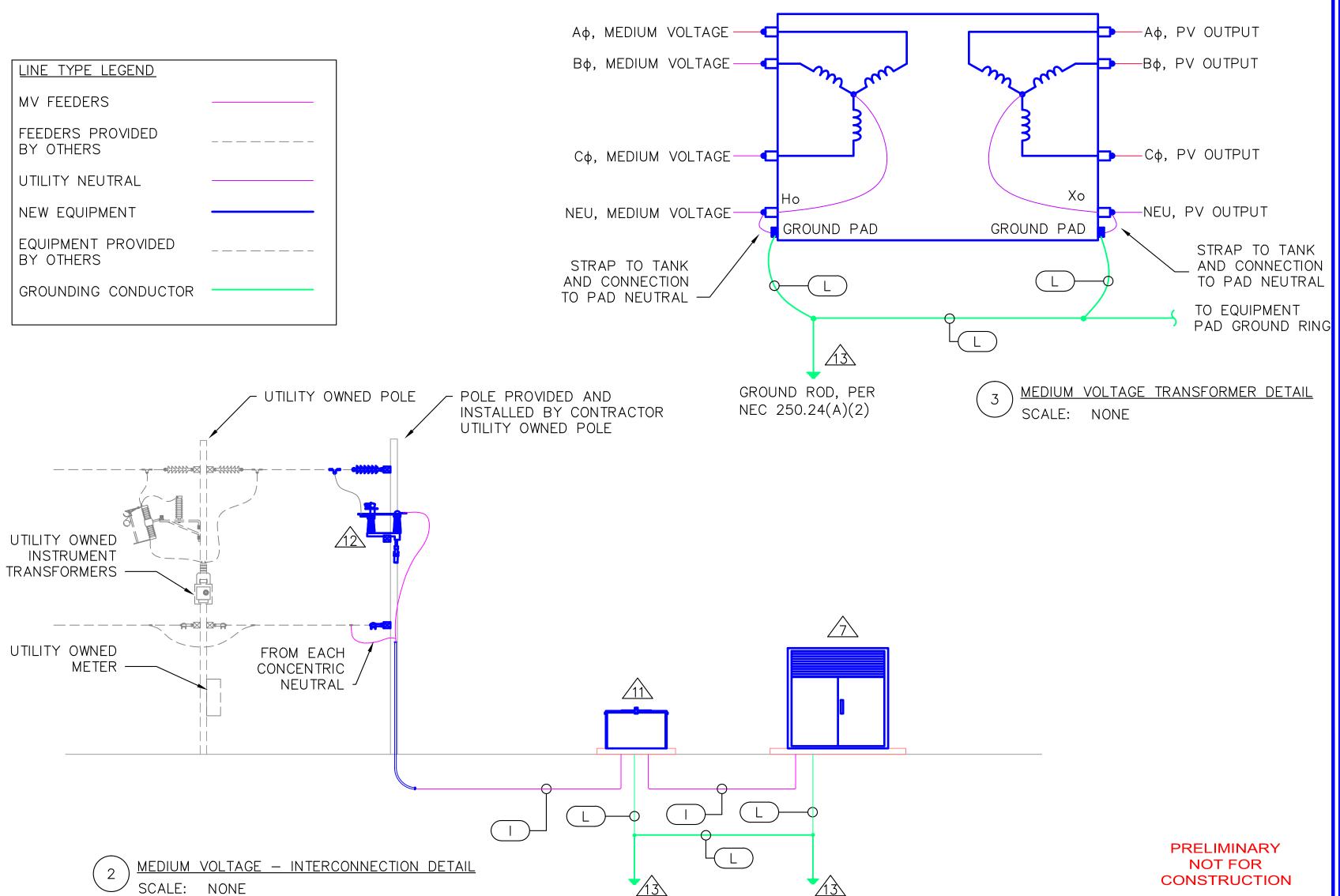
VRECA Ference design / - 1,000Vdc

SITE PLAN – FENCE
NRECA
SUNDA REFERENCE
1,000KW – 1,00

02.02.2015 SHEET:

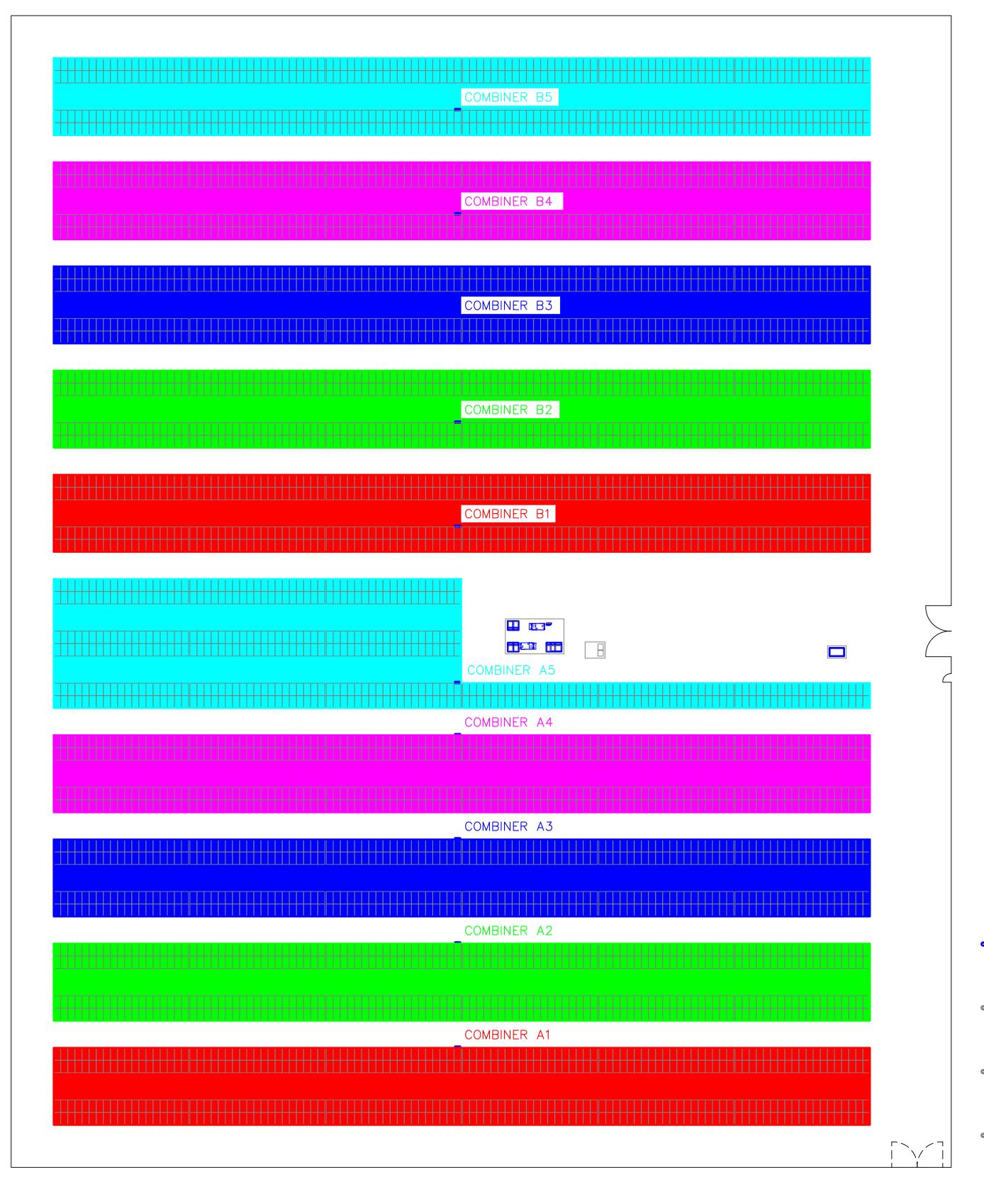
	OLTE				\	
(1)	SHE	PLAN	_	MEDIUM	VOLTAGE	ROU IING
	SCAL	F: 1	/3	2"=1'-0"	VOLTAGE ,	

					FEEDE **FEEDI			1 ~ 1				
TAG		CON	IDUCTOR TYPE	CONDUCTOR TYPE	INSULATION TYPE		GR	DUND SIZE	GROUND TYPE	GROUND INSULATION TYPE	RACEWAY SIZE	RACEWAY QUANTITY NOTE2
A12	(12)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	2" NOTES	(1)
A24	(24)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	3" NOTES	(1)
В	(4)	250 KCMIL	PER RACEWAY	ALUMINUM	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)
С	(3)	500 KCMIL	PER RACEWAY	ALUMINUM	THWN-2	(1)	#4/0	PER RACEWAY	ALUMINUM	THWN-2	3"	(3)
	(3)	500 KCMIL	PER RACEWAY	ALUMINUM	THWN-2						2.4/28	(7)
D	(1)	500 KCMIL	NEU PER RACEWAY	ALUMINUM	THWN-2						3-1/2"	(7)
_	(1)	#12	PER RACEWAY	COPPER	THWN-2	(4)	44.2	DED D 1 05 WAY	GODDED	T.W. 2	2.4411	741
E	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
_	(2)	#12	PER RACEWAY	COPPER	THWN-2	(4)	44.2	DED DAGEWAY	CORRE	TUMAN 2	2/4/	(4)
F	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
G						(1)	#3	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
н						(1)	#6	PER RACEWAY	COPPER	BARE		
I NOTE6	(3)	#1/0	PER RACEWAY	ALUMINUM	MV TR-XLPE WITH CONCENTRIC NEUTRAL				,		4"	(1)
J					BELDEN #3084A	•					3/4"	(1)
К					MANUFACTURER PROVID	ED WH	IIP				1-1/4"	(1)
L						(1)	#3/0	PER RACEWAY	COPPER	BARE		
М	(2)	500 KCMIL	PER RACEWAY	COPPER	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)

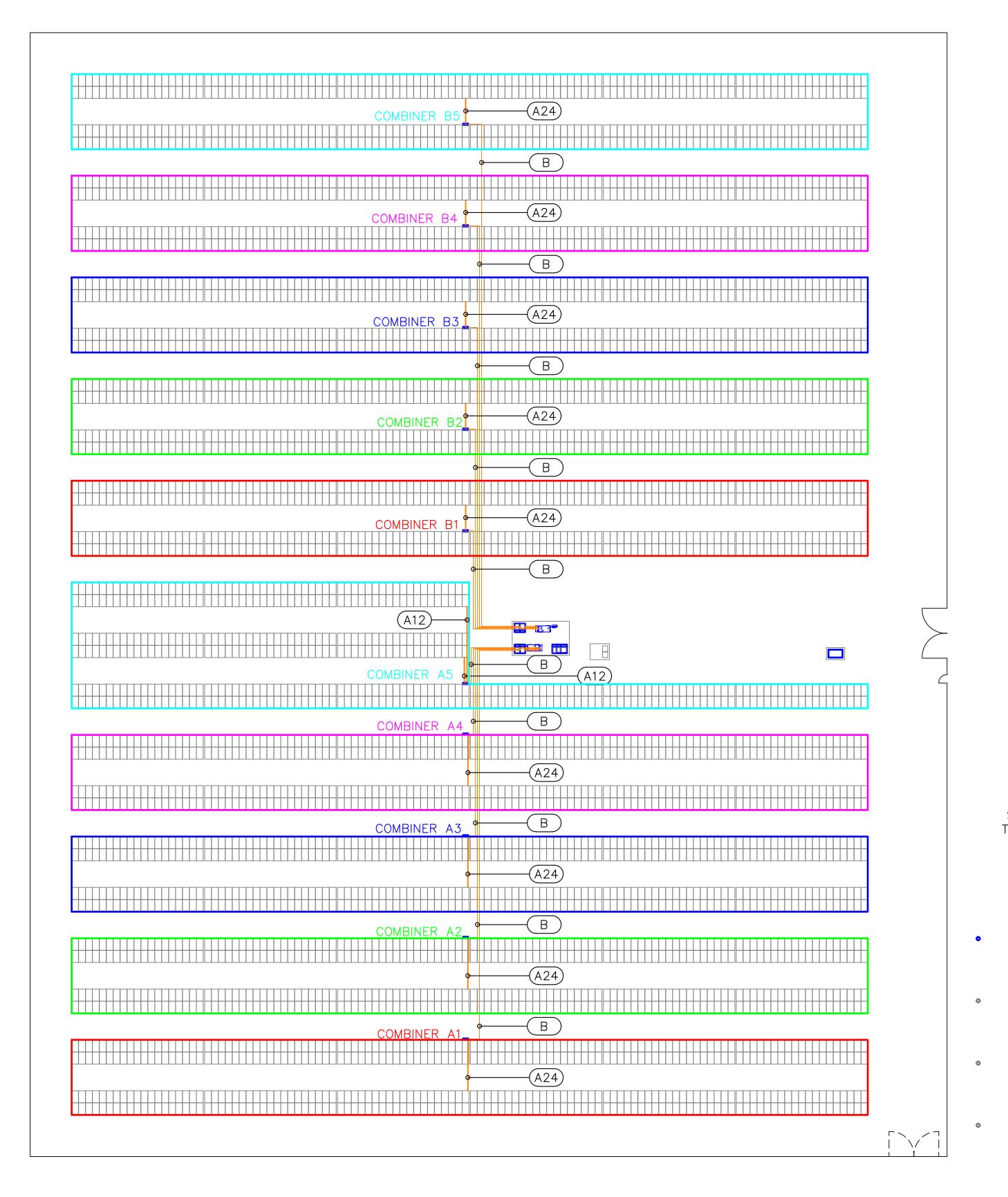

1. (#) - DENOTES QUANTITY TO BE PROVIDED

2. WHERE MULITPLE CONDUITS ARE NOTED, THE RACEWAYS SHALL BE PROVIDED IN PARALLEL. 3. REFER TO RACEWAY APPLICATION SCHEDULE FOR RACEWAY TYPE.

4. ALL RACEWAY SIZES ARE NEC MINIMUM REQUIREMENTS, LARGER CONDUITS ARE PERMITED FOR EASE OF INSTALLATION. 5. PV SOURCE CIRCUITS SHALL NOT BE REQUIRED TO BE IN RACEWAY IF CONDUCTORS ARE NOT READILY ACCESSIBLE AND NOT EXPOSED TO PHYSICAL DAMAGE. BELOW GRADE PV SOURCE CIRCUITS SHALL BE IN


6. PROVIDE 15KV RATED MEDUIM VOLTAGE FEEDERS WITH 100% INSULATION.

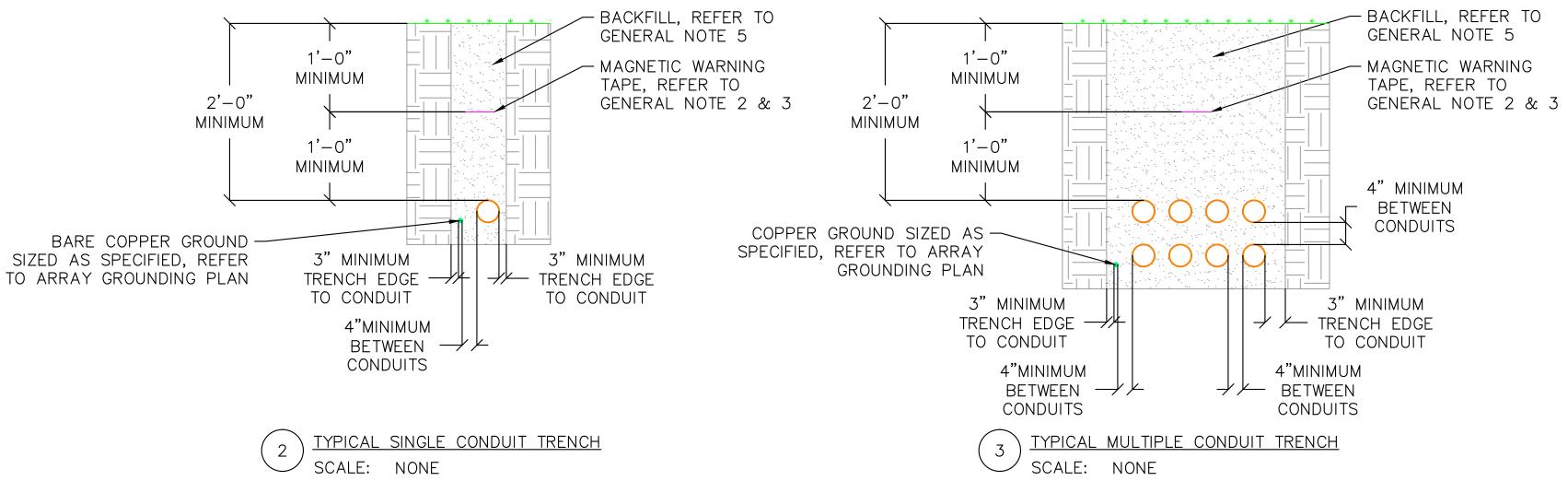
	EQUIF	PMENT SC	HEDULE \(\sigma\)
	**EQU	JIPMENT IS N	OTED BY /#\
TAG	DESCRIPTION	QUANTITY	DESCRIPTION
1	SOLAR PV MODULE	4,560	305 WATT MODULE REFER TO MODULE SCHEDULE FOR SPECIFICATION. MODULES SHALL BE LABELED PER NEC 690 VI
2	DISCONNECT COMBINER	10	24 STRING DISCONNECTING COMBINER TO CONTAIN 24 STRINGS, RATED AT 400A WITH EACH POSITIVE AND EACH NEGATIVE FUSED (TOTAL 48) 15A FUSES, 1000 VDC, RATED FOR CONTINUOUS DUTY, WITH DISCONNECT HANDLE MOUNTED ON DOOR EXTERIOR, NEMA 3R ENCLOSURE, TRANSIENT SURGE SUPPRESSION. ENCLOSURE SHALL BE A MINIMUM OF 30" W X 38" H X 8" DEEP.
3	DC CIRCUIT BREAKER UNIT	2	PROVIDE NEMA 3R DISCONNECT ENCLOSURE WITH (5) 4-POLE (2-POLE POSITVE, 2-POLE NEGATIVE) 350A 1000V DC CIRCUIT BREAKERS, NO BUS BARS REQUIRED ONLY FEED THROUGH BREAKERS. EACH CIRCUIT BREAKER SHALL HAVE 2 POLES DEDICATED TO POSITIVE FEEDER AND TWO POLES DEDICATED TO NEGATIVE FEEDER. PROVIDE POLARIS LUG PER CIRCUIT FOR GROUNDED FEEDERS.
4	INVERTER	2	500 KWATT, 1000VDC, 3 PHASE 420 VAC, FLOATING GROUND CONFIGURATION. (REFER TO INVERTER RATING SCHEDULE FOR ADDITIONAL INFORMATION)
5	AC CIRCUIT BREAKER UNIT	1	NEMA 3R ENCLOSURE WITH (2) 1000A 3 POLE CIRCUIT BREAKERS, (1) 15A 3 POLE CIRCUIT BREAKER, AND (1) 2000A CIRCUIT BREAKER MAIN, RATED FOR SERVICE ENTRANCE, PROVIDE SURGE PROTECTION. INTEGRATED 2KVA STEPDOWN TRANFORMER WITH CAPACITY FOR (1) 15A SINGLE POLE 120V CIRCUIT BREAKER AND (1) 15A 2 POLE 208V CIRCUIT BREAKER
6	RECEPTACLE	1	120V, 20 AMP, OUTDOOR RATED, WEATHER RESISTANT GFI DUPLEX RECEPTACLE WITH IN USE COVER.
7	MEDIUM VOLTAGE TRANSFORMER	1	1000KVA, THREE PHASE, 12.47KV YGRD/7.2KV PRIMARY AND 420V WYE SECONDARY, LIQUID COOLED TRANSFORMER, BAYONET FUSES ON PRIMARY SIDE. REQUIRED TO MEET UTILITY REQUIREMENTS.
8	PHOTOVOLTAIC PRODUCTION MONITORING EQUIPMENT	1	CENTRAL DATA ACQUISITION UNIT, NEMA 3R ENCLOSURE WITH BATTERY BACK UP, LOCAL DATA STORAGE, INTEGRAL CELL MODEM COMMUNICATIONS, WEB BASED DISPLAY AND LOCAL KEYPAD DISPLAY, 208V SINGLE PHASE POWER.
9	PHOTOVOLTAIC MONITORING METEOROLOGICAL STATION	1	STATION INCLUDES: PYRANOMETER - PLANE OF ARRAY, BACK OF MODULE TEMPERATURE SENSOR, AMBIENT TEMPERATURE, ANEMOMETER
10	PHOTOVOLTAIC PRODUCTION MONITORING METER	1	REVENUE GRADE METER WITH MODBUS TCP COMMUNICATIONS
11	MEDIUM VOLTAGE FUSED SWITCH	1	15KV PAD MOUNTED SWITCH WITH INTEGRATED 60A STANDARD SPEED FUSES
12	COORDINATED POLE MOUNTED SWITCH	1	SWITCH TO MEET THE REQUIREMENTS OF THE UTILITY
13	GROUND ROD	6	3/4" DIAMETER, 10'-0" LONG COPPER CLAD GROUND ROD


02.02.2015 SHEET:

1) SITE PLAN - COMBINER LAYOUT
SCALE: 1/32"=1'-0"

N

PE Downst		Solar Energy Sola	7	LD Wake Forest, NC ICH	
Charles Ladd, Jr., PE NC PE# 25988	919.556.3056			THIS LINE SHOULD MEASURE ONE INCH	
NO					
REV. DATE DESCRIPTION					
REV.					
		_	7		
SITE PLAN - COMBINER LAYOUT	< /		1 000/77	;))	
PLAN - COM) 		,	
SITE			Z O O	_	
TITLE:	PROJECT:				



 $\begin{array}{c}
1 \\
\hline
SCALE: 1/32"=1'-0"
\end{array}$

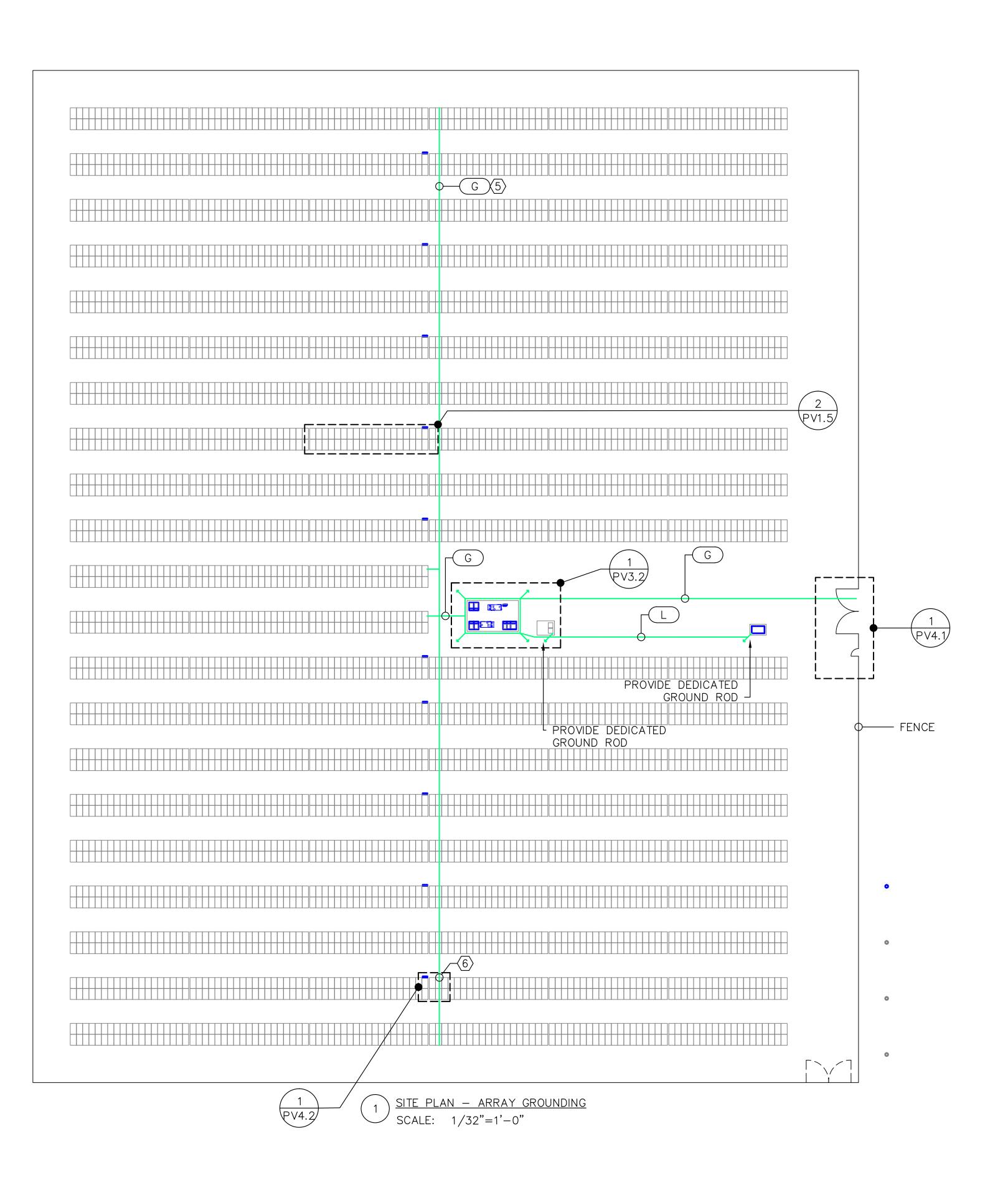
							IEDULE OTED BY	1 ~ 1				
TAG		CON	DUCTOR TYPE	CONDUCTOR TYPE	INSULATION TYPE		GR	DUND SIZE	GROUND TYPE	GROUND INSULATION TYPE	RACEWAY SIZE	RACEWAY QUANTITY NOTE2
A12	(12)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	2" NOTES	(1)
A24	(24)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	3" NOTES	(1)
В	(4) 250	0 KCMIL	PER RACEWAY	ALUMINUM	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)
С	(3) 500	0 KCMIL	PER RACEWAY	ALUMINUM	THWN-2	(1)	#4/0	PER RACEWAY	ALUMINUM	THWN-2	3"	(3)
D	(3) 500	0 KCMIL	PER RACEWAY	ALUMINUM	THWN-2						3-1/2"	(7)
D	(1) 500	0 KCMIL	NEU PER RACEWAY	ALUMINUM	THWN-2						3-1/2	(7)
E	(1)	#12	PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
E	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAT	COPPER	THVVIV-2	3/4	(1)
F	(2)	#12	PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
r	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	I □WN-Z	3/4	(1)
G						(1)	#3	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
Н						(1)	#6	PER RACEWAY	COPPER	BARE		
I NOTE6	(3)	#1/0	PER RACEWAY	ALUMINUM	MV TR-XLPE WITH CONCENTRIC NEUTRAL						4"	(1)
J				·	BELDEN #3084	A					3/4"	(1)
К					MANUFACTURER PROVI	DED WH	IIP				1-1/4"	(1)
L						(1)	#3/0	PER RACEWAY	COPPER	BARE		
М	(2) 500	0 KCMIL	PER RACEWAY	COPPER	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)

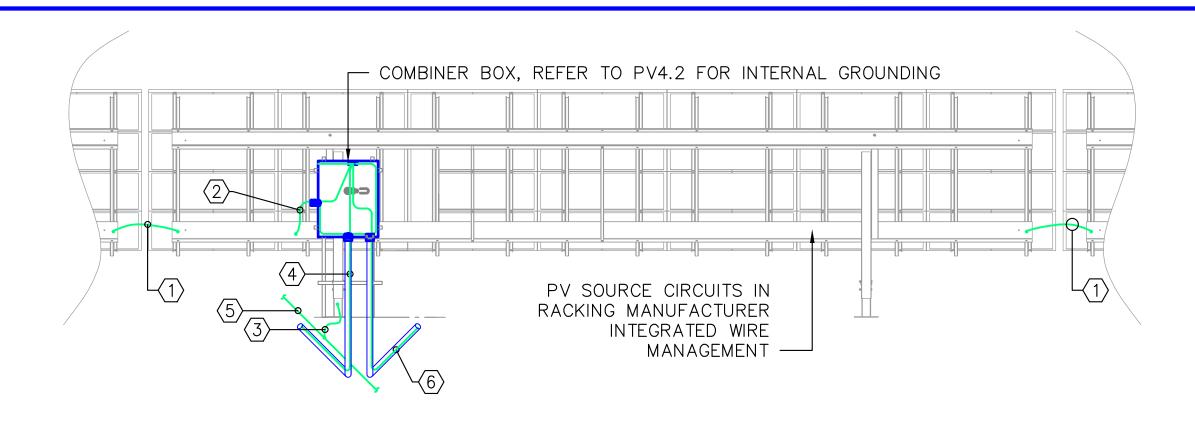
NOTES:

- 1. (#) DENOTES QUANTITY TO BE PROVIDED
- 2. WHERE MULITPLE CONDUITS ARE NOTED, THE RACEWAYS SHALL BE PROVIDED IN PARALLEL.
- 3. REFER TO RACEWAY APPLICATION SCHEDULE FOR RACEWAY TYPE.
- 4. ALL RACEWAY SIZES ARE NEC <u>MINIMUM</u> REQUIREMENTS, LARGER CONDUITS ARE PERMITED FOR EASE OF INSTALLATION.
- 5. PV SOURCE CIRCUITS SHALL NOT BE REQUIRED TO BE IN RACEWAY IF CONDUCTORS ARE NOT READILY ACCESSIBLE AND NOT EXPOSED TO PHYSICAL DAMAGE. BELOW GRADE PV SOURCE CIRCUITS SHALL BE IN

GENERAL NOTES:

- . ALL UNDERGROUND RACEWAY SHALL BE SCHEDULE 40 PVC. TRANSITIONS BELOW TO ABOVE GRADE SHALL BE PER CONDUIT STUB UP DETAIL.
- 2. FOR TRENCHES 24" WIDE AND LESS, ONLY ONE RUN OF MAGNETIC ELECTRICAL WARNING TAPE SHALL BE REQUIRED PER DETAIL 3.
- 3. FOR TRENCHES WIDER THAN 24" ONE PIECE OF TAPE SHALL BE LOCATED AT EACH SIDE OF THE TRENCH WITH ADDITIONAL RUNS PROVIDED AS NECESSARY. THE MAXIMUM DISTANCE BETWEEN TAPE RUNS SHALL BE 24" ON CENTER.
- 4. TRENCH BOTTOMS: EXCAVATE TRENCHES 3" DEEPER THAN BOTTOM OF PIPE ELEVATION TO ALLOW FOR BEDDING COURSE. HAND EXCAVATE FOR BELL OF PIPE. EXCAVATE TRENCHES 3" DEEPER THAN ELEVATION REQUIRED IN ROCK OR OTHER UNYIELDING BEARING MATERIAL TO ALLOW BEDDING COURSE.
- 5. ALL BACKFILL SHOULD BE FREE OF MATERIALS THAT MAY DAMAGE THE CONDUIT OR CABLE SYSTEM. BACKFILL WITHIN 150 MM (6 IN) OF THE CONDUIT OR CABLE SHOULD BE FREE OF SOLID MATERIAL GREATER THAN 100 MM (2 IN) IN MAXIMUM DIMENSION OR WITH SHARP EDGES LIKELY TO DAMAGE IT. THE BALANCE OF BACKFILL SHOULD BE FREE OF SOLID MATERIAL GREATER THAN 200 MM (8 IN) IN MAXIMUM DIMENSION. BACKFILL MATERIAL SHOULD BE ADEQUATELY COMPACTED.
- 6. REFER TO ARRAY GROUNDING DETAIL FOR BARE COPPER GROUND TRENCH ROUTING.
- 7. FEEDER ROUTING SHOWN DIAGRAMMATICALLY, COORDINATION WITH SITE CONDITIONS REQUIRED.


PRELIMINARY NOT FOR CONSTRUCTION


⊨ € DATE: 02.02.2015 SHEET:

REV. DATE

PV1.4

NRECA REFERENCOKW - 1,0

2 TYPICAL GROUND MOUNT RACKING GROUNDING DETAILS SCALE: NONE

GENERAL NOTES.

- 1. THE RACKING SYSTEM SHALL BE UL LISTED FOR GROUNDING CONTINUITY. COMPONENTS WITHIN THE RACKING SYSTEM SHALL FORM AN ELECTRICALLY BONDED UNIT AND REQUIRE ADDITIONAL BONDING FROM ONE INDIVIDUAL RACK SECTION TO ADJACENT SECTIONS.
- 2. REFER TO GROUNDING RISER DIAGRAM.
- 3. REFER TO SINGLE LINE DIAGRAM AND SCHEDULES FOR SPECIFICATIONS
- 4. ARRAY EQUIPMENT GROUND CONDUCTOR SHALL BE RUN IN TRENCH WITH COMBINER DC WIRES.
- 5. GROUND ROUTING SHOWN DIAGRAMATICALLY, COORDINATION WITH SITE CONDITIONS REQUIRED.

KEYED NOTES: (X)

- 1. PROVIDE GROUND BRAID BETWEEN RACKING SECTIONS PER RACKING MANUFACTURER INSTRUCTIONS.
- 2. PROVIDE #6 BARE COPPER BONDING JUMPER FROM THE COMBINER BOX GROUND BAR TO THE WIRE TRAY.
- 3. PROVIDE #6 BARE COPPER BONDING JUMPER VIA IRREVERSIBLE CRIMP FROM ARRAY EQUIPMENT GROUND CONDUCTOR IN TRENCH TO ONE PIER PER ROW OF RACKING. IRREVERSIBLE CRIMP SHALL BE UL LISTED FOR GROUNDING AND BONDING. ENSURE ALL CONNECTIONS ARE TORQUED TO MANUFACTURER'S RECOMMENDED TORQUE VALUE.
- 4. PROVIDE ARRAY EQUIPMENT GROUND CONDUCTOR (REFER TO SINGLE LINE DIAGRAM AND SCHEDULES FOR EGC SIZE) FROM COMBINER BOX GROUND BUS BAR TO ASSOCIATED INVERTER BUS BAR. EQUIPMENT GROUND CONDUCTOR SHALL BE RUN IN CONDUIT WITH ASSOCIATED PV OUTPUT CONDUCTORS.
- 5. PROVIDE ARRAY EQUIPMENT GROUND CONDUCTOR (REFER TO SINGLE LINE DIAGRAM AND SCHEDULES FOR EGC SIZE) LENGTH OF THE ARRAY.
- 6. PROVIDE #6 BARE COPPER BONDING JUMPER FROM THE COMBINER BOX GROUND BAR TO THE WIRE TRAY ON ADJACENT ROW SUPPLIED BY ASSOCIATED COMBINER.

Power Securifications Solar Energy Solutions

S09 Heritage Commerce Ct. Wake Forest, NC 27587

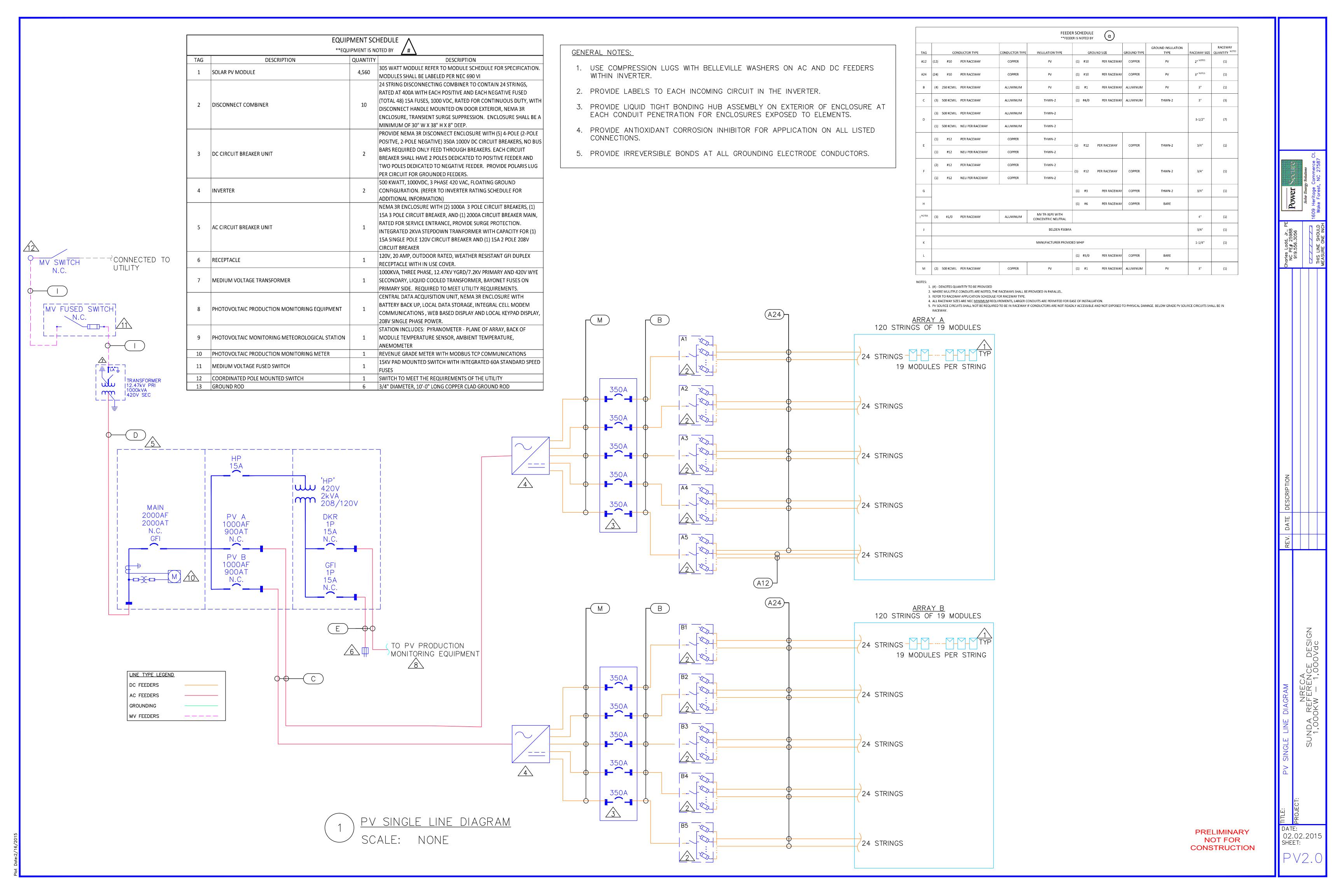
Charles Ladd, Jr., PE
NC PE# 25988
919.556.3056
THIS LINE SHOULD
WA

DESCRIPTION

REV. DATE

NRECA Reference Design JKW — 1,000Vdc

SUNDA REF


TITLE: PROJEC

PRELIMINARY

NOT FOR CONSTRUCTION

02.02.2015 SHEET:

PV1.5

	FOUIP	MENT SC	HEDULE A
		IIPMENT IS NO	
TAG	DESCRIPTION	QUANTITY	DESCRIPTION
-			305 WATT MODULE REFER TO MODULE SCHEDULE FOR SPECIFICATION.
1	SOLAR PV MODULE	4,560	MODULES SHALL BE LABELED PER NEC 690 VI
			24 STRING DISCONNECTING COMBINER TO CONTAIN 24 STRINGS,
			RATED AT 400A WITH EACH POSITIVE AND EACH NEGATIVE FUSED
2	DISCONNECT COMPINED	10	(TOTAL 48) 15A FUSES, 1000 VDC, RATED FOR CONTINUOUS DUTY, WITH
2	DISCONNECT COMBINER	10	DISCONNECT HANDLE MOUNTED ON DOOR EXTERIOR, NEMA 3R
			ENCLOSURE, TRANSIENT SURGE SUPPRESSION. ENCLOSURE SHALL BE A
			MINIMUM OF 30" W X 38" H X 8" DEEP.
			PROVIDE NEMA 3R DISCONNECT ENCLOSURE WITH (5) 4-POLE (2-POLE
			POSITVE, 2-POLE NEGATIVE) 350A 1000V DC CIRCUIT BREAKERS, NO BUS
3	DC CIRCUIT BREAKER UNIT	2	BARS REQUIRED ONLY FEED THROUGH BREAKERS. EACH CIRCUIT
, J	DE CINCOTT BREAKEN OWN		BREAKER SHALL HAVE 2 POLES DEDICATED TO POSITIVE FEEDER AND
			TWO POLES DEDICATED TO NEGATIVE FEEDER. PROVIDE POLARIS LUG
			PER CIRCUIT FOR GROUNDED FEEDERS.
			500 KWATT, 1000VDC, 3 PHASE 420 VAC, FLOATING GROUND
4	INVERTER	2	CONFIGURATION. (REFER TO INVERTER RATING SCHEDULE FOR
			ADDITIONAL INFORMATION)
			NEMA 3R ENCLOSURE WITH (2) 1000A 3 POLE CIRCUIT BREAKERS, (1)
			15A 3 POLE CIRCUIT BREAKER, AND (1) 2000A CIRCUIT BREAKER MAIN,
5	AC CIRCUIT BREAKER UNIT	1	RATED FOR SERVICE ENTRANCE, PROVIDE SURGE PROTECTION.
			INTEGRATED 2KVA STEPDOWN TRANFORMER WITH CAPACITY FOR (1)
			15A SINGLE POLE 120V CIRCUIT BREAKER AND (1) 15A 2 POLE 208V
			CIRCUIT BREAKER
6	RECEPTACLE	1	120V, 20 AMP, OUTDOOR RATED, WEATHER RESISTANT GFI DUPLEX
			RECEPTACLE WITH IN USE COVER.
7	NAFDULINA VOLTA CE TRANSFORMER	1	1000KVA, THREE PHASE, 12.47KV YGRD/7.2KV PRIMARY AND 420V WYE
7	MEDIUM VOLTAGE TRANSFORMER	1	SECONDARY, LIQUID COOLED TRANSFORMER, BAYONET FUSES ON
			PRIMARY SIDE. REQUIRED TO MEET UTILITY REQUIREMENTS. CENTRAL DATA ACQUISITION UNIT, NEMA 3R ENCLOSURE WITH
			BATTERY BACK UP, LOCAL DATA STORAGE, INTEGRAL CELL MODEM
8	PHOTOVOLTAIC PRODUCTION MONITORING EQUIPMENT	1	COMMUNICATIONS, WEB BASED DISPLAY AND LOCAL KEYPAD DISPLAY,
			208V SINGLE PHASE POWER.
			STATION INCLUDES: PYRANOMETER - PLANE OF ARRAY, BACK OF
9	PHOTOVOLTAIC MONITORING METEOROLOGICAL STATION	1	MODULE TEMPERATURE SENSOR, AMBIENT TEMPERATURE,
J		_	ANEMOMETER
10	PHOTOVOLTAIC PRODUCTION MONITORING METER	1	REVENUE GRADE METER WITH MODBUS TCP COMMUNICATIONS
		_	15KV PAD MOUNTED SWITCH WITH INTEGRATED 60A STANDARD SPEED
11	MEDIUM VOLTAGE FUSED SWITCH	1	FUSES
12	COORDINATED POLE MOUNTED SWITCH	1	SWITCH TO MEET THE REQUIREMENTS OF THE UTILITY
13	GROUND ROD	6	3/4" DIAMETER, 10'-0" LONG COPPER CLAD GROUND ROD

MINIMUM CONDUIT REQUI	RED PER APPLICATION
APPLICATION	CONDUIT TYPE
ROOF MOUNTED (EXPOSED)	RGS
BUILDING INTERIOR (EXPOSED TO PHYSICAL DAMAGE)	RGS
BUILDING INTERIOR (PROTECTED FROM PHYSICAL DAMAGE)	EMT
BUILDING EXTERIOR (EXPOSED TO PHYSICAL DAMAGE)	RGS
BUILDING EXTERIOR (PROTECTED FROM PHYSICAL DAMAGE)	RGS
BELOW GRADE (IN DIRECT CONTACT WITH EARTH)	PVC SCHED 40
TRANSITION FROM BELOW GRADE TO ABOVE GRADE	RGS OR PV SCHED 80

				0		VERTER A T SPECIFICATION					
COMBINER DESIGNATION	MODULE	MODULE I _{sc}	QUANTITY OF STRINGS	COMBINER RATING	OCPD TRIP	DISCONNECTING MEANS FRAME	RATED MPP CURRENT	RATED MPP VOLTAGE	MAX SYSTEM VOLTAGE	MAX CIRCUIT CURRENT	MAX POWER
A1	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
A2	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
А3	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
A4	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
A 5	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
	-										
	-										
	-										
	-										
	-										
-	NVERTER TOTALS		120				1010.40 A	695.40 V	930.70 V	1342.50 A	695.4 KW

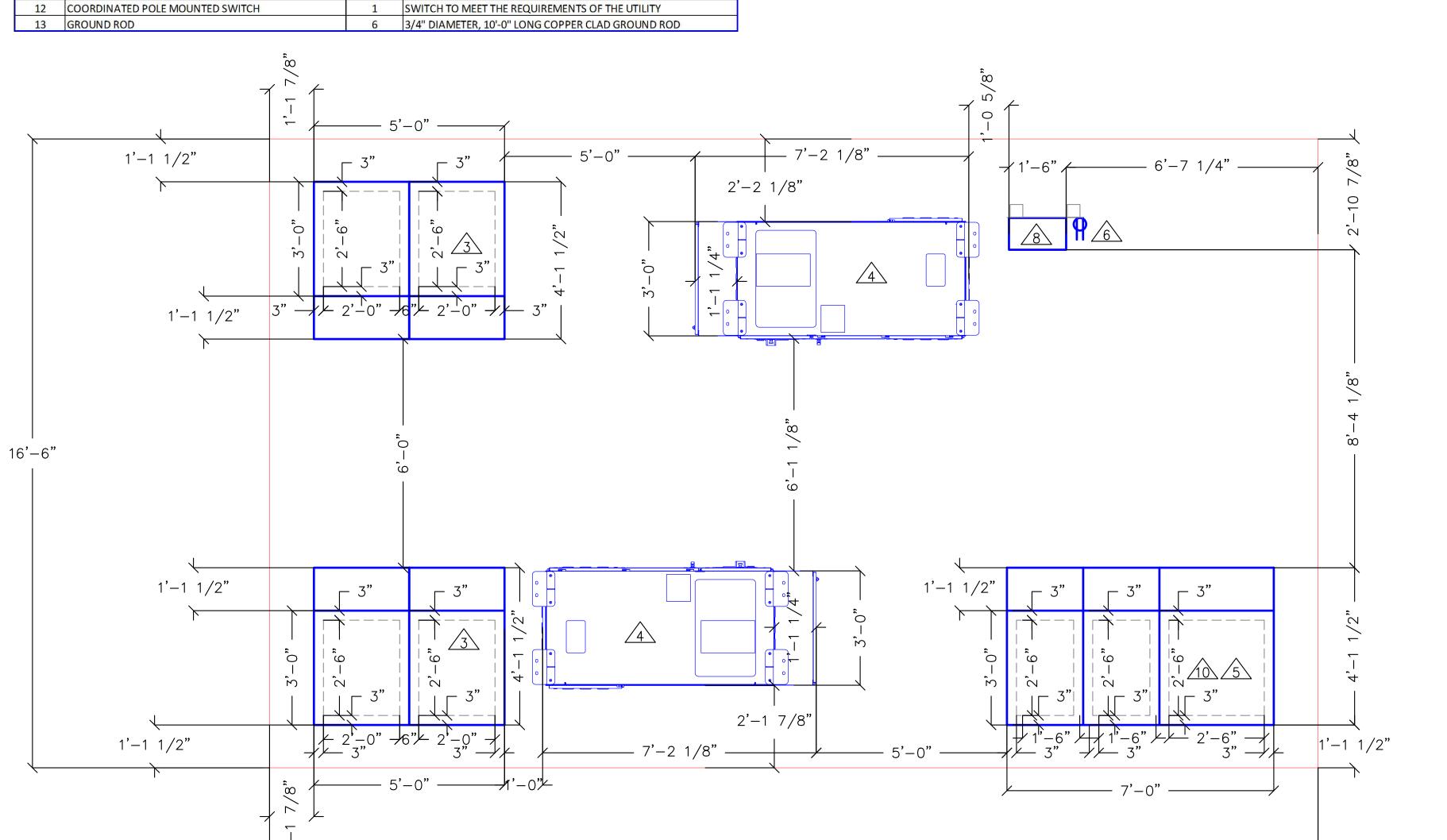
						VERTER B T SPECIFICATION					
COMBINER DESIGNATION	MODULE	MODULE I _{SC}	QUANTITY OF STRINGS	COMBINER RATING	OCPD TRIP	DISCONNECTING MEANS FRAME	RATED MPP CURRENT	RATED MPP VOLTAGE	MAX SYSTEM VOLTAGE	MAX CIRCUIT CURRENT	MAX POWER
B1	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
B2	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
В3	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
B4	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
B5	REC305PE72	8.95 A	24	400 A	350 A	400 A	202.08 A	695.40 V	930.70 V	268.50 A	139.08 KW
	-										
	-										
	-										
	-										
	-										
-	NVERTER TOTALS		120				1010.40 A	695.40 V	930.70 V	1342.50 A	695.4 KW

A & B	INVERTER DESIGNATION
2	INVERTER QUANTITY
ADVANCED_ENERGY	INVERTER MAKE
AE 500NX-1KV	INVERTER MODEL
UNGROUNDED	INVERTER TYPE
1000	MAX DC VOLTAGE RATING
500 KW	MAX POWER @ 40°C
420, 3ф	NOMINAL AC VOLTAGE
700 A	MAX AC OUTPUT CURRENT
900 A	МАХ ОСРД
600 V	$MINV_{MP}$
1000 V	$MAXV_{MP}$
700 V	START UP VOLTAGE
NEMA 3R	ENCLOSURE RATING
NO	INTEGRATED DC DISCONNECT
NO	INTEGRATED DC FUSING
NO	INTEGRATED AC DISCONNECT

MODULE MANUFACTURER	REC
MODULE MODEL NUMBER	REC305PE72
MAX POWER (P _{MAX})	305 W
CELLS	MULTICRYSTALLINE
FRAME	SILVER
MAX POWER-POINT CURRENT (I _{MP})	8.42 A
MAX POWER-POINT VOLTAGE (V_{MP})	36.60 V
OPEN CIRCUIT VOLTAGE (V _{OC})	45.10 V
SHORT CIRCUIT CURRENT (I _{SC})	8.95 A
MAX SERIES FUSE (OCPD)	20 A
MAX VOLTAGE (V _{DC})	1000
V _{OC} TEMP COEFF (%/°C)	-0.27
CONNECTOR	MC4 OR EQUIVALENT
MANUFACTURER RECOMMENDED GROUND	WEEB CLIP
WEEB CLIP QUANTITY	9120

TAG		CON	DUCTOR TYPE	CONDUCTOR TYPE	INSULATION TYPE		GR	OUND SIZE	GROUND TYPE	GROUND INSULATION TYPE	RACEWAY SIZE	RACEWAY QUANTITY NOT		
A12	(12)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	2" ^{NOTE5}	(1)		
A24	(24)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	3" NOTES	(1)		
В	(4) 250	0 KCMIL	PER RACEWAY	ALUMINUM	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)		
С	(3) 500	0 KCMIL	PER RACEWAY	ALUMINUM	THWN-2	(1)	#4/0	PER RACEWAY	ALUMINUM	THWN-2	3"	(3)		
	(3) 500	0 KCMIL	PER RACEWAY	ALUMINUM	THWN-2									
D	(1) 500	0 KCMIL	NEU PER RACEWAY	ALUMINUM	THWN-2						3-1/2"	(7)		
_	(1)	#12	PER RACEWAY	COPPER	THWN-2				CODDED		2 /4!!	(1)		
E	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)		
	(2)	#12	PER RACEWAY	COPPER	THWN-2			#42	44.2				- 4-11	(-)
F	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)		
G						(1)	#3	PER RACEWAY	COPPER	THWN-2	3/4"	(1)		
Н						(1)	#6	PER RACEWAY	COPPER	BARE				
I NOTE6	(3)	#1/0	PER RACEWAY	ALUMINUM	MV TR-XLPE WITH CONCENTRIC NEUTRAL						4"	(1)		
J					BELDEN #3084A						3/4"	(1)		
K					MANUFACTURER PROVID	ED WE	HIP				1-1/4"	(1)		
L						(1)	#3/0	PER RACEWAY	COPPER	BARE				
М	(2) 500	0 KCMIL	PER RACEWAY	COPPER	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)		

- 1. (#) DENOTES QUANTITY TO BE PROVIDED
- 2. WHERE MULITPLE CONDUITS ARE NOTED, THE RACEWAYS SHALL BE PROVIDED IN PARALLEL.
- 3. REFER TO RACEWAY APPLICATION SCHEDULE FOR RACEWAY TYPE.
- 4. ALL RACEWAY SIZES ARE NEC MINIMUM REQUIREMENTS, LARGER CONDUITS ARE PERMITED FOR EASE OF INSTALLATION.
- 5. PV SOURCE CIRCUITS SHALL NOT BE REQUIRED TO BE IN RACEWAY IF CONDUCTORS ARE NOT READILY ACCESSIBLE AND NOT EXPOSED TO PHYSICAL DAMAGE. BELOW GRADE PV SOURCE CIRCUITS SHALL BE IN

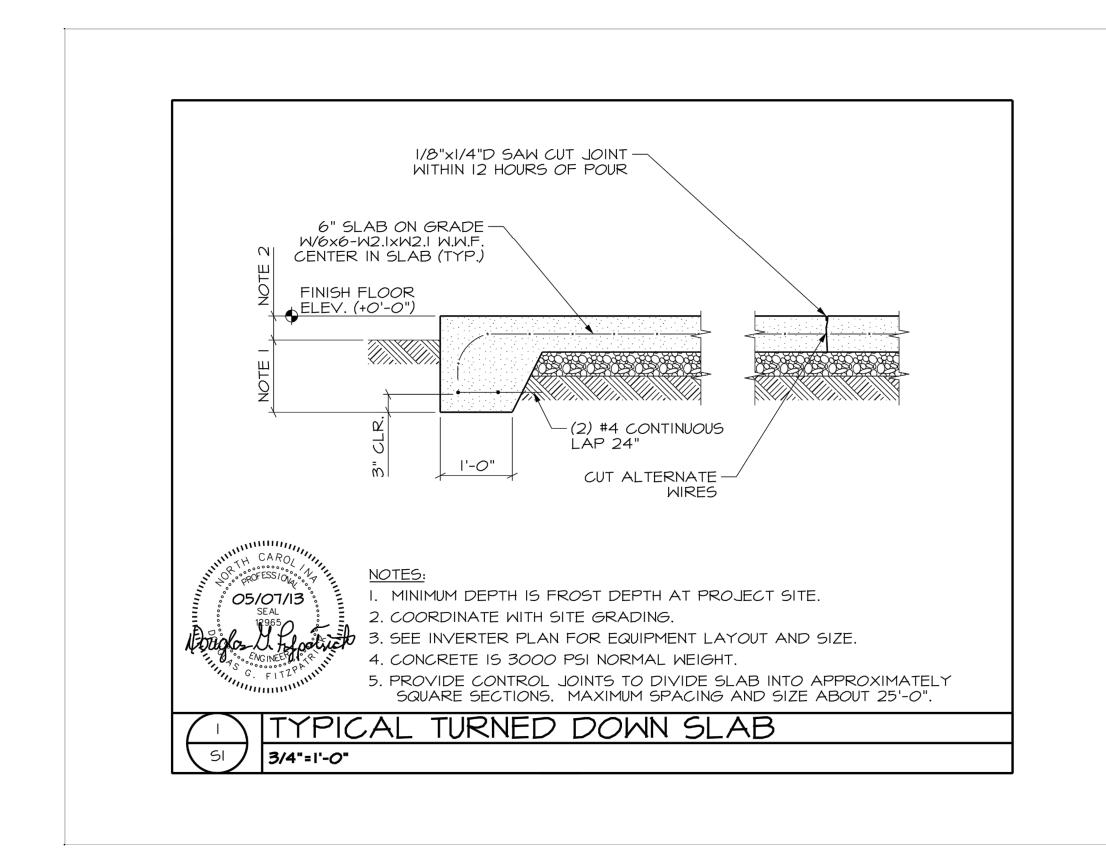

RACEWAY.

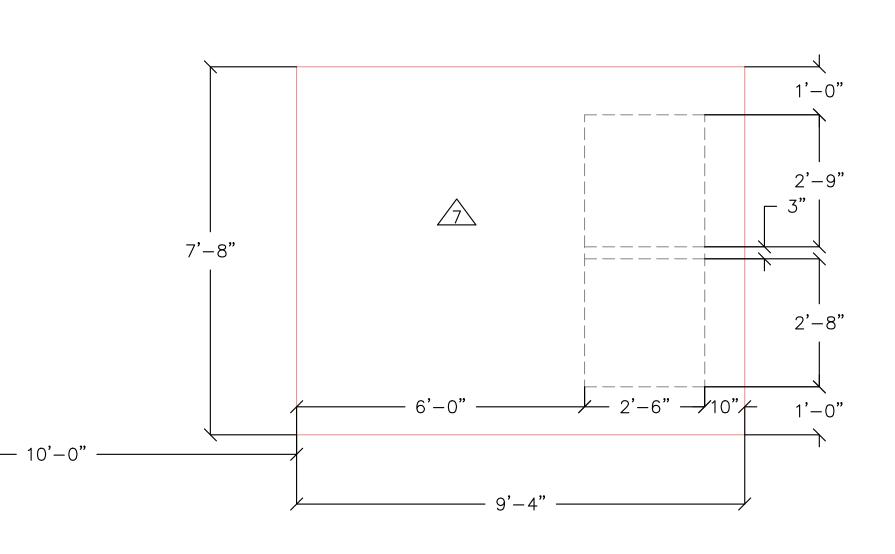
	AC SWI	rchboard						
SERVICE SUPPL	Y: 480V, 3ф, 4 WIRE							
BUS:	2000A							
MAIN:	2000A							
FEEDER:	REFER TO SINGLE LINE DIAGRAM							
AIC RATING:	VERIFY WITH UTILITY PRIOR TO INSTALLATION	N						
		INVERTER	Δ					
		900 AMP T						
		300 AIVII 1						
		INVERTER	В					
		900 AMP T						
		AUXILIARY POWER						
	MAIN CIRCUIT BREAKER	VIA 2KVA TRANSFORMER	SPACE					
	2000 AMP	15 AMP	0.7.02					
	*NOTE - MAIN BREAKER SHALL HAVE	SPACE	SPACE					
	GROUND FAULT PROTECTION							
	CAPABILITY							
		SPACE	SPACE					
		SPACE	SPACE					
		90.05	50405					
		SPACE	SPACE					
		SPACE	SPACE					
		552	22					

PRELIMINARY NOT FOR CONSTRUCTION

DATE: 02.02.2015 SHEET:

		MENT SCI	
	**EQU	IPMENT IS NO	OTED BY #
TAG	DESCRIPTION	QUANTITY	DESCRIPTION
1	SOLAR PV MODULE	4,560	305 WATT MODULE REFER TO MODULE SCHEDULE FOR
1	SOLAR PV WIODOLE	4,300	SPECIFICATION. MODULES SHALL BE LABELED PER NEC 690 VI
			28 STRING DISCONNECTING COMBINER TO CONTAIN 28 STRINGS,
			RATED AT 400A WITH EACH POSITIVE AND EACH NEGATIVE FUSED
			(TOTAL 56) 15A FUSES, 1000 VDC, RATED FOR CONTINUOUS DUTY,
_			WITH DISCONNECT HANDLE MOUNTED ON DOOR EXTERIOR, NEMA
2	DISCONNECT COMBINER	10	3R ENCLOSURE, TRANSIENT SURGE SUPPRESSION. ENCLOSURE
			SHALL BE A MINIMUM OF 30" W X 38" H X 8" DEEP WITH INTEGRAL
			TEST PORTS COMPATIBLE WITH MC4 CONNECTORS (ONE MALE - ON
			FEMALE).
			PROVIDE NEMA 3R DISCONNECT ENCLOSURE WITH (5) 350A 1000V
			DC CIRCUIT BREAKERS, NO MUS BARS REQUIRED ONLY FEED
3	DC CIRCUIT BREAKER UNIT	1 2 1	THROUGH BREAKERS. PROVIDE POLARIS LUG PER CIRCUIT FOR
			GROUNDED FEEDERS.
			500 KWATT, 1000VDC, 3 PHASE 420 VAC, FLOATING GROUND
			CONFIGURATION. INVERTER FREQUENCY TRIP LIMIT SET TO 57 HZ
4	INVERTER	2	
			(REFER TO INVERTER RATING SCHEDULE FOR ADDITIONAL
			INFORMATION)
			NEMA 3R ENCLOSURE WITH (2) 1000A 3 POLE CIRCUIT BREAKERS, (3
	AC CIRCUIT BREAKER UNIT	1	30A 3 POLE CIRCUIT BREAKER, AND (1) 2500A CIRCUIT BREAKER
5			MAIN, RATED FOR SERVICE ENTRANCE, PROVIDE SURE PROTECTION
			INTEGRATED 2KVA STEPDOWN TRANFORMER WITH CAPACITY FOR
			(1) 15A SINGLE POLE 120V CIRCUIT BREAKER AND (1) 15A 2 POLE
			240V CIRCUIT BREAKER
6	RECEPTACLE	1	120V, 20 AMP, OUTDOOR RATED, WEATHER RESISTANCT GFI DUPLE
			RECEPTACLE WITH IN USE COVER.
			2000KVA, THREE PHASE, 12.47KV YGRD/7.2KV PRIMARY AND 420V
7	MEDIUM VOLTAGE TRANSFORMER	1	WYE SECONDARY, LIQUID COOLED TRANSFORMER, BAYONET FUSES
			ON PRIMARY SIDE. REQUIRED TO MEET UTILITY REQUIREMENTS.
			CENTRAL DATA ACQUISITION UNIT, NEMA 3R ENCLOSURE WITH
8	PHOTOVOLTAIC PRODUCTION MONITORING EQUIPMENT	1	BATTERY BACK UP, LOCAL DATA STORAGE, INTEGRAL CELL MODEM
			COMMUNICATIONS, WEB BASED DISPLAY AND LOCAL KEYPAD
			DISPLAY
	PHOTOVOLTAIC MONITORING METEOROLOGICAL		STATION INCLUDES: PYRANOMETER - PLANE OF ARRAY, BACK OF
9	STATION	1	MODULE TEMPERATURE SENSOR, AMBIENT TEMPERATURE,
	57,11014		ANEMOMETER
10	PHOTOVOLTAIC PRODUCTION MONITORING METER	1	REVENUE GRADE METER WITH MODBUS TCP COMMUNICATIONS
11	MEDIUM VOLTAGE FUSED SWITCH	1	25KV PAD MOUNTED SWITCH, WITH INTEGRATED FUSES
12	COORDINATED POLE MOUNTED SWITCH	1	SWITCH TO MEET THE REQUIREMENTS OF THE UTILITY
13	GROUND ROD	6	3/4" DIAMETER, 10'-0" LONG COPPER CLAD GROUND ROD




CONCRETE PAD

EQUIPMENT

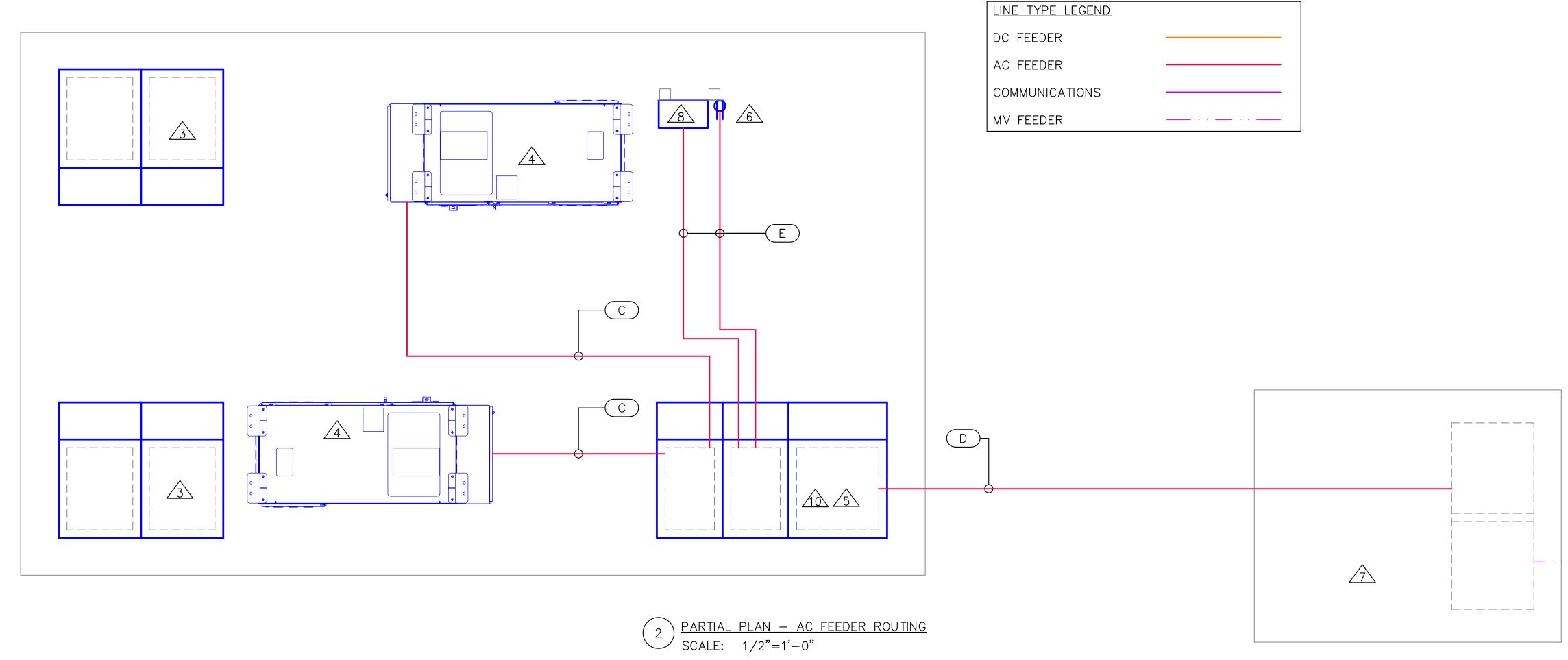
CONDUIT WINDOW

PRELIMINARY NOT FOR CONSTRUCTION

KEYED NOTES: (X)

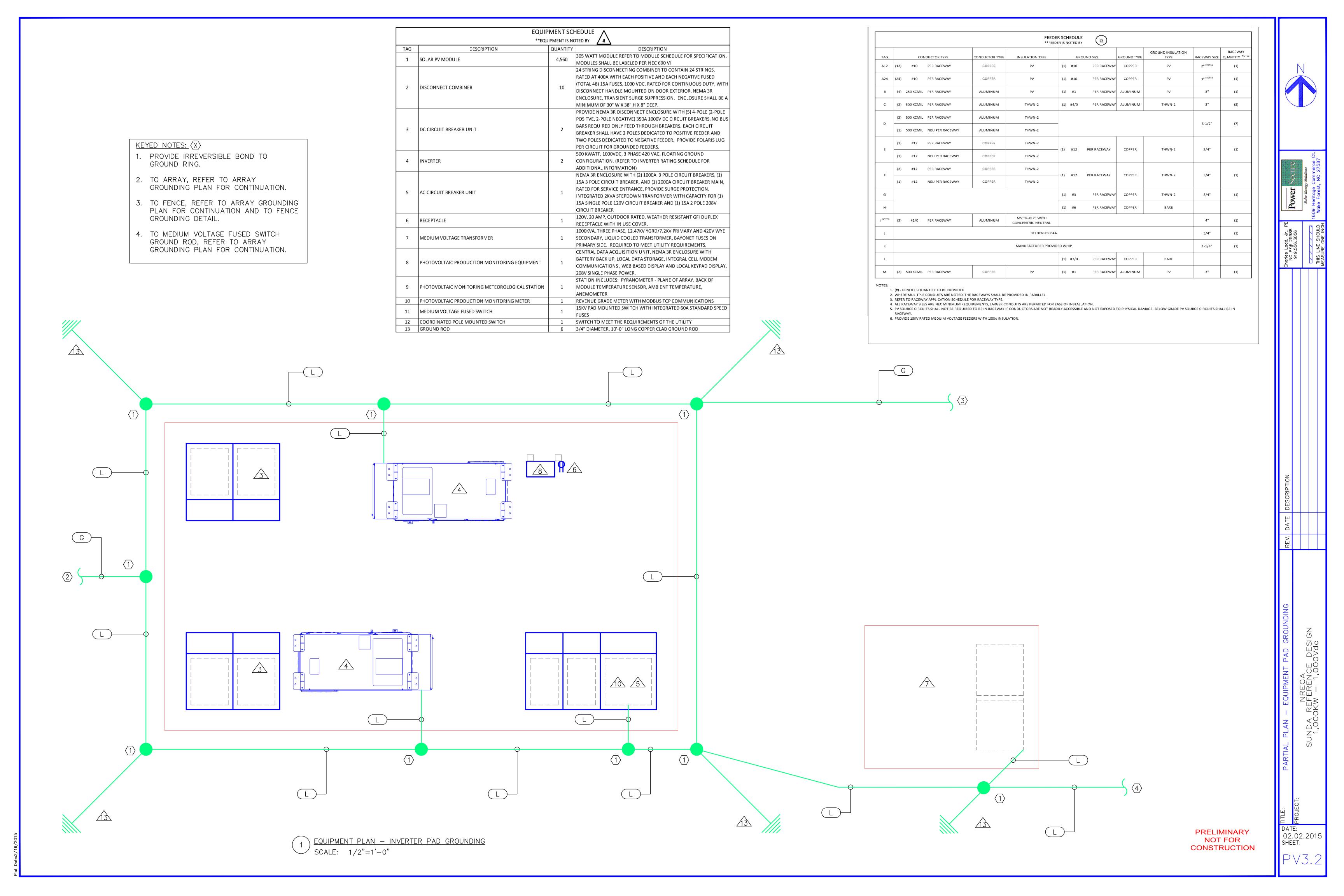
- 1. REFER TO DC ROUTING PLAN FOR CONTINUATION.
- 2. TO MEDIUM VOLTAGE SWITCH. REFER TO MEDIUM VOLTAGE ROUTING FOR CONTINUATION.
- 3. TO BACK OF MODULE TEMPERATURE SENSOR.

						HEDULE OTED BY	1 ~ 1				
TAG	cc	ONDUCTOR TYPE	CONDUCTOR TYPE	INSULATION TYPE		GRO	DUND SIZE	GROUND TYPE	GROUND INSULATION TYPE	RACEWAY SIZE	RACEWAY QUANTITY NO
A12	(12) #10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	2" NOTE5	(1)
A24	(24) #10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	3" NOTES	(1)
В	(4) 250 KCMI	L PER RACEWAY	ALUMINUM	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)
С	(3) 500 KCMII	L PER RACEWAY	ALUMINUM	THWN-2	(1)	#4/0	PER RACEWAY	ALUMINUM	THWN-2	3"	(3)
D	(3) 500 KCMII	L PER RACEWAY	ALUMINUM	THWN-2						3-1/2"	(7)
D	(1) 500 KCMII	L NEU PER RACEWAY	ALUMINUM	THWN-2						3-1/2	(7)
E	(1) #12	PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
_	(1) #12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAT	COFFER	TTTVVN-2	3/4	(±)
F	(2) #12	PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
r	(1) #12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PEN NACEWAT	COPPER	I TIVVIN-2	3/4	(±)
G					(1)	#3	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
Н					(1)	#6	PER RACEWAY	COPPER	BARE		
I NOTES	(3) #1/0	PER RACEWAY	ALUMINUM	MV TR-XLPE WITH CONCENTRIC NEUTRAL						4"	(1)
J				BELDEN #3084A						3/4"	(1)
К				MANUFACTURER PROVIE	ED WI	llP				1-1/4"	(1)
L					(1)	#3/0	PER RACEWAY	COPPER	BARE		
М	(2) 500 KCMII	L PER RACEWAY	COPPER	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)


1. (#) - DENOTES QUANTITY TO BE PROVIDED

2. WHERE MULITPLE CONDUITS ARE NOTED, THE RACEWAYS SHALL BE PROVIDED IN PARALLEL. 3. REFER TO RACEWAY APPLICATION SCHEDULE FOR RACEWAY TYPE.

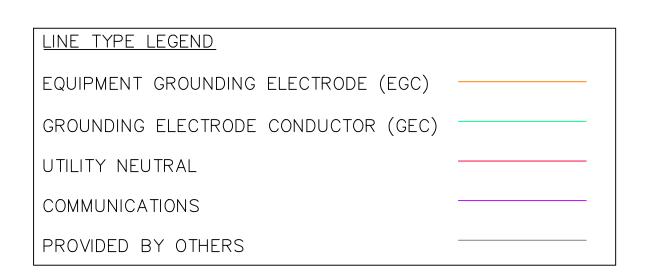
6. PROVIDE 15KV RATED MEDUIM VOLTAGE FEEDERS WITH 100% INSULATION.

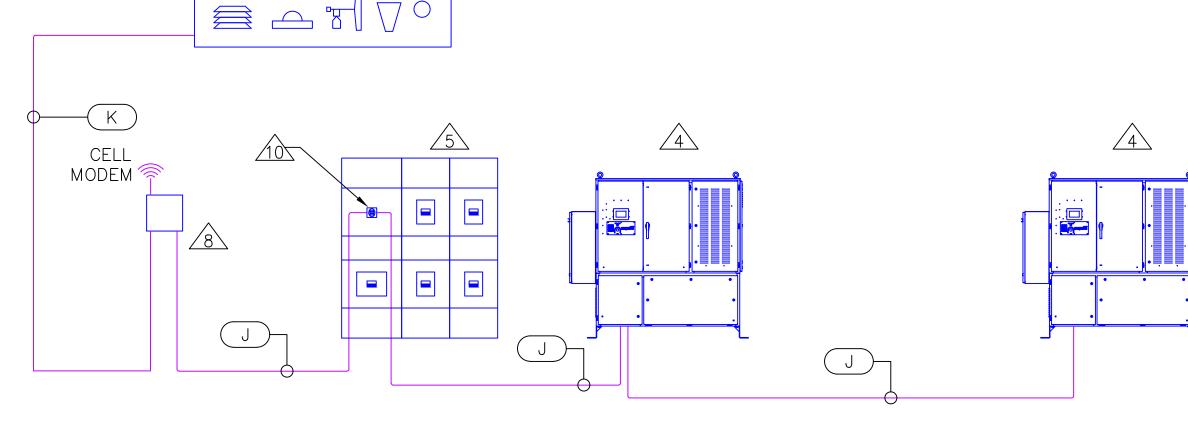

- 4. ALL RACEWAY SIZES ARE NEC MINIMUM REQUIREMENTS, LARGER CONDUITS ARE PERMITED FOR EASE OF INSTALLATION.
 5. PV SOURCE CIRCUITS SHALL NOT BE REQUIRED TO BE IN RACEWAY IF CONDUCTORS ARE NOT READILY ACCESSIBLE AND NOT EXPOSED TO PHYSICAL DAMAGE. BELOW GRADE PV SOURCE CIRCUITS SHALL BE IN

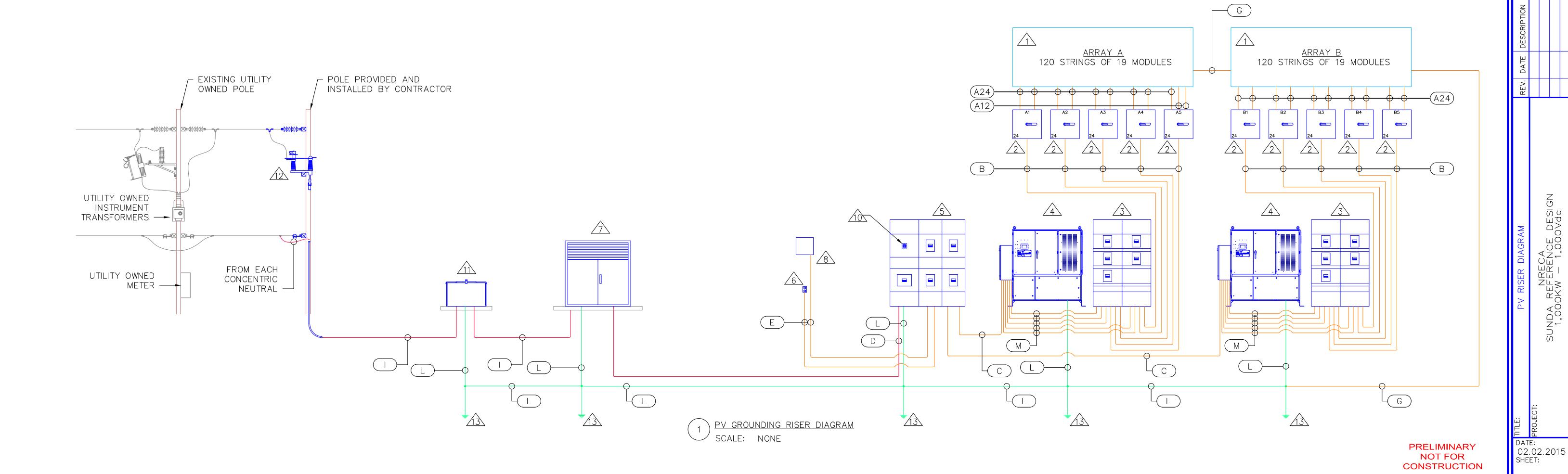
PARTIAL PLAN - DC & COMMUNICATION FEEDER ROUTING SCALE: 1/2"=1'-0"

	•	MENT SO	CHEDULE A	II	
TAG	DESCRIPTION	QUANTITY		_	
1	SOLAR PV MODULE	4,560	305 WATT MODULE REFER TO MODULE SCHEDULE FOR SPECIFICATION. MODULES SHALL BE LABELED PER NEC 690 VI	SCRIPTION	
2	DISCONNECT COMBINER	10	24 STRING DISCONNECTING COMBINER TO CONTAIN 24 STRINGS, RATED AT 400A WITH EACH POSITIVE AND EACH NEGATIVE FUSED (TOTAL 48) 15A FUSES, 1000 VDC, RATED FOR CONTINUOUS DUTY, WITH DISCONNECT HANDLE MOUNTED ON DOOR EXTERIOR, NEMA 3R ENCLOSURE, TRANSIENT SURGE SUPPRESSION. ENCLOSURE SHALL BE A MINIMUM OF 30" W X 38" H X 8" DEEP.	DATE DESCRI	
3	DC CIRCUIT BREAKER UNIT	2	PROVIDE NEMA 3R DISCONNECT ENCLOSURE WITH (5) 4-POLE (2-POLE POSITVE, 2-POLE NEGATIVE) 350A 1000V DC CIRCUIT BREAKERS, NO BUS BARS REQUIRED ONLY FEED THROUGH BREAKERS. EACH CIRCUIT BREAKER SHALL HAVE 2 POLES DEDICATED TO POSITIVE FEEDER AND TWO POLES DEDICATED TO NEGATIVE FEEDER. PROVIDE POLARIS LUG PER CIRCUIT FOR GROUNDED FEEDERS.	REV.	
4	INVERTER	2	500 KWATT, 1000VDC, 3 PHASE 420 VAC, FLOATING GROUND CONFIGURATION. (REFER TO INVERTER RATING SCHEDULE FOR ADDITIONAL INFORMATION)	(5)	
5	AC CIRCUIT BREAKER UNIT	1	NEMA 3R ENCLOSURE WITH (2) 1000A 3 POLE CIRCUIT BREAKERS, (1) 15A 3 POLE CIRCUIT BREAKER, AND (1) 2000A CIRCUIT BREAKER MAIN, RATED FOR SERVICE ENTRANCE, PROVIDE SURGE PROTECTION. INTEGRATED 2KVA STEPDOWN TRANFORMER WITH CAPACITY FOR (1) 15A SINGLE POLE 120V CIRCUIT BREAKER AND (1) 15A 2 POLE 208V CIRCUIT BREAKER	ER ROUTING	N GN
6	RECEPTACLE	1	120V, 20 AMP, OUTDOOR RATED, WEATHER RESISTANT GFI DUPLEX RECEPTACLE WITH IN USE COVER.	FEED	S С
7	MEDIUM VOLTAGE TRANSFORMER	1	1000KVA, THREE PHASE, 12.47KV YGRD/7.2KV PRIMARY AND 420V WYE SECONDARY, LIQUID COOLED TRANSFORMER, BAYONET FUSES ON PRIMARY SIDE. REQUIRED TO MEET UTILITY REQUIREMENTS.	PAD F	CE CE COO
8	PHOTOVOLTAIC PRODUCTION MONITORING EQUIPMENT	1	CENTRAL DATA ACQUISITION UNIT, NEMA 3R ENCLOSURE WITH BATTERY BACK UP, LOCAL DATA STORAGE, INTEGRAL CELL MODEM COMMUNICATIONS, WEB BASED DISPLAY AND LOCAL KEYPAD DISPLAY, 208V SINGLE PHASE POWER.	QUIPMENT	N N N N N N N N N N N N N N N N N N N
9	PHOTOVOLTAIC MONITORING METEOROLOGICAL STATION	1	STATION INCLUDES: PYRANOMETER - PLANE OF ARRAY, BACK OF MODULE TEMPERATURE SENSOR, AMBIENT TEMPERATURE, ANEMOMETER	EQUI	7. 7.3.7.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
10	PHOTOVOLTAIC PRODUCTION MONITORING METER	1	REVENUE GRADE METER WITH MODBUS TCP COMMUNICATIONS		$\bigcap_{A \in A} \bigcap_{A \in A} \bigcap_{A$
11	MEDIUM VOLTAGE FUSED SWITCH	1	15KV PAD MOUNTED SWITCH WITH INTEGRATED 60A STANDARD SPEED FUSES	N N N	SUND
12 13	COORDINATED POLE MOUNTED SWITCH GROUND ROD	6	SWITCH TO MEET THE REQUIREMENTS OF THE UTILITY 3/4" DIAMETER, 10'-0" LONG COPPER CLAD GROUND ROD	砬	S
				ite: Partial	ROJECT:
			PRELIMINARY NOT FOR CONSTRUCTION	DAT 02 SHE	<u> </u>

PV3.1

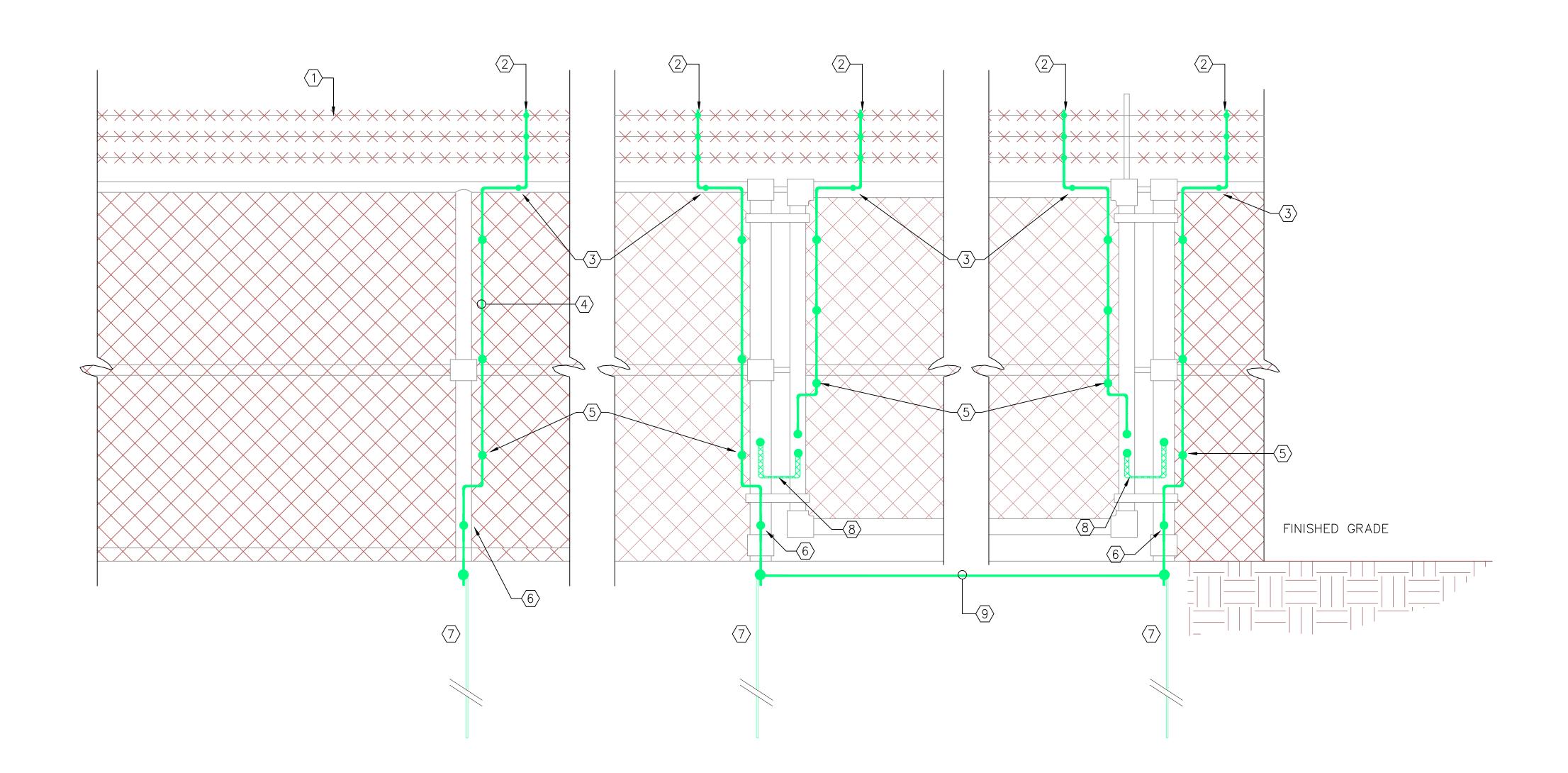



TAG		CON	IDUCTOR TYPE	CONDUCTOR TYPE	INSULATION TYPE		GR	c (α)	GROUND TYPE	GROUND INSULATION TYPE	RACEWAY SIZE	RACEWAY QUANTITY NOTE
A12	(12)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY		PV	2" NOTE5	(1)
A24	(24)	#10	PER RACEWAY	COPPER	PV	(1)	#10	PER RACEWAY	COPPER	PV	3" NOTE5	(1)
В	(4)	250 KCMIL	PER RACEWAY	ALUMINUM	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)
С	(3)	500 KCMIL	PER RACEWAY	ALUMINUM	THWN-2	(1)	#4/0	PER RACEWAY	ALUMINUM	THWN-2	3"	(3)
	(3)	500 KCMIL	PER RACEWAY	ALUMINUM	THWN-2				,		2.4/211	/ =\
D	(1)	500 KCMIL	NEU PER RACEWAY	ALUMINUM	THWN-2						3-1/2"	(7)
F	(1)	#12	PER RACEWAY	COPPER	THWN-2	(1)	412	DED DACEWAY	CORRER	TUMAN 2	7./4!!	/1)
E	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
_	(2)	#12	PER RACEWAY	COPPER	THWN-2	(4)	<i>114.</i> 2	DED DAGENAN	CORRER	TIIIAA 2	2 (41)	(4)
F	(1)	#12	NEU PER RACEWAY	COPPER	THWN-2	(1)	#12	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
G						(1)	#3	PER RACEWAY	COPPER	THWN-2	3/4"	(1)
Н						(1)	#6	PER RACEWAY	COPPER	BARE		
NOTE6	(3)	#1/0	PER RACEWAY	ALUMINUM	MV TR-XLPE WITH CONCENTRIC NEUTRAL						4"	(1)
J					BELDEN #3084A						3/4"	(1)
К					MANUFACTURER PROVID	ED WH	IIP				1-1/4"	(1)
L						(1)	#3/0	PER RACEWAY	COPPER	BARE		
М	(2)	500 KCMIL	PER RACEWAY	COPPER	PV	(1)	#1	PER RACEWAY	ALUMINUM	PV	3"	(1)


NOTES:		
	1.	(#) - DENOTES QUANTITY TO BE PROV

- 2. WHERE MULITPLE CONDUITS ARE NOTED, THE RACEWAYS SHALL BE PROVIDED IN PARALLEL.
- 3. REFER TO RACEWAY APPLICATION SCHEDULE FOR RACEWAY TYPE.
- 4. ALL RACEWAY SIZES ARE NEC <u>MINIMUM</u> REQUIREMENTS, LARGER CONDUITS ARE PERMITED FOR EASE OF INSTALLATION. 5. PV SOURCE CIRCUITS SHALL NOT BE REQUIRED TO BE IN RACEWAY IF CONDUCTORS ARE NOT READILY ACCESSIBLE AND NOT EXPOSED TO PHYSICAL DAMAGE. BELOW GRADE PV SOURCE CIRCUITS SHALL BE IN
- 6. PROVIDE 15KV RATED MEDUIM VOLTAGE FEEDERS WITH 100% INSULATION.

EQUIPMENT SCHEDULE **EQUIPMENT IS NOTED BY #						
TAG	DESCRIPTION	QUANTITY				
1	SOLAR PV MODULE	4,560	305 WATT MODULE REFER TO MODULE SCHEDULE FOR SPECIFICATION. MODULES SHALL BE LABELED PER NEC 690 VI			
2	DISCONNECT COMBINER	10	24 STRING DISCONNECTING COMBINER TO CONTAIN 24 STRINGS, RATED AT 400A WITH EACH POSITIVE AND EACH NEGATIVE FUSED (TOTAL 48) 15A FUSES, 1000 VDC, RATED FOR CONTINUOUS DUTY, WITH DISCONNECT HANDLE MOUNTED ON DOOR EXTERIOR, NEMA 3R ENCLOSURE, TRANSIENT SURGE SUPPRESSION. ENCLOSURE SHALL BE A MINIMUM OF 30" W X 38" H X 8" DEEP.			
3	DC CIRCUIT BREAKER UNIT	2	PROVIDE NEMA 3R DISCONNECT ENCLOSURE WITH (5) 4-POLE (2-POLE POSITVE, 2-POLE NEGATIVE) 350A 1000V DC CIRCUIT BREAKERS, NO BUS BARS REQUIRED ONLY FEED THROUGH BREAKERS. EACH CIRCUIT BREAKER SHALL HAVE 2 POLES DEDICATED TO POSITIVE FEEDER AND TWO POLES DEDICATED TO NEGATIVE FEEDER. PROVIDE POLARIS LUG PER CIRCUIT FOR GROUNDED FEEDERS.			
4	INVERTER	2	500 KWATT, 1000VDC, 3 PHASE 420 VAC, FLOATING GROUND CONFIGURATION. (REFER TO INVERTER RATING SCHEDULE FOR ADDITIONAL INFORMATION)			
5	AC CIRCUIT BREAKER UNIT	1	NEMA 3R ENCLOSURE WITH (2) 1000A 3 POLE CIRCUIT BREAKERS, (1) 15A 3 POLE CIRCUIT BREAKER, AND (1) 2000A CIRCUIT BREAKER MAIN, RATED FOR SERVICE ENTRANCE, PROVIDE SURGE PROTECTION. INTEGRATED 2KVA STEPDOWN TRANFORMER WITH CAPACITY FOR (1) 15A SINGLE POLE 120V CIRCUIT BREAKER AND (1) 15A 2 POLE 208V CIRCUIT BREAKER			
6	RECEPTACLE	1	120V, 20 AMP, OUTDOOR RATED, WEATHER RESISTANT GFI DUPLEX RECEPTACLE WITH IN USE COVER.			
7	MEDIUM VOLTAGE TRANSFORMER	1	1000KVA, THREE PHASE, 12.47KV YGRD/7.2KV PRIMARY AND 420V WYE SECONDARY, LIQUID COOLED TRANSFORMER, BAYONET FUSES ON PRIMARY SIDE. REQUIRED TO MEET UTILITY REQUIREMENTS.			
8	PHOTOVOLTAIC PRODUCTION MONITORING EQUIPMENT	1	CENTRAL DATA ACQUISITION UNIT, NEMA 3R ENCLOSURE WITH BATTERY BACK UP, LOCAL DATA STORAGE, INTEGRAL CELL MODEM COMMUNICATIONS, WEB BASED DISPLAY AND LOCAL KEYPAD DISPLAY, 208V SINGLE PHASE POWER.			
9	PHOTOVOLTAIC MONITORING METEOROLOGICAL STATION	1	STATION INCLUDES: PYRANOMETER - PLANE OF ARRAY, BACK OF MODULE TEMPERATURE SENSOR, AMBIENT TEMPERATURE, ANEMOMETER			
10	PHOTOVOLTAIC PRODUCTION MONITORING METER	1	REVENUE GRADE METER WITH MODBUS TCP COMMUNICATIONS			
11	MEDIUM VOLTAGE FUSED SWITCH	1	15KV PAD MOUNTED SWITCH WITH INTEGRATED 60A STANDARD SPEED FUSES			
12	COORDINATED POLE MOUNTED SWITCH	1	SWITCH TO MEET THE REQUIREMENTS OF THE UTILITY			
13	GROUND ROD	6	3/4" DIAMETER, 10'-0" LONG COPPER CLAD GROUND ROD			

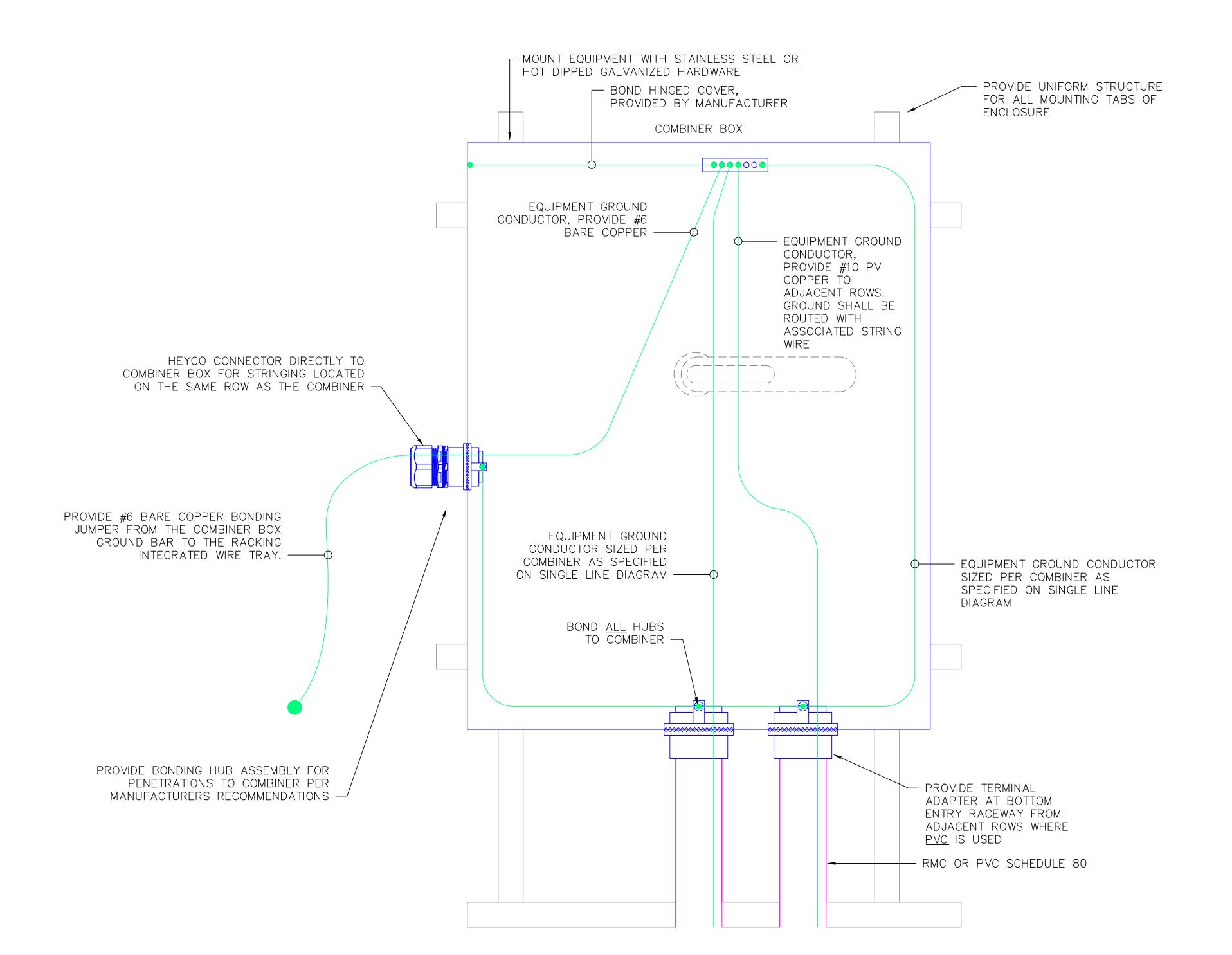


KEYED NOTES: (X)

- 1. BARBED WIRE.
- PROVIDE COMPRESSION SPLICE WITH C-TAP TO CONNECT WIRE TO OUTSIDE BARB.
- 3. PROVIDE EXOTHERMIC WELD TO TOP RAIL.
- 4. #6 BARE COPPER WIRE, TYPICAL UNLESS NOTED OTHERWISE.
- 5. PROVIDE COMPRESSION SPLICE WITH C-TAP TO CONNECT WIRE TO FENCE FABRIC.
- 6. PROVIDE EXOTHERMIC WELD TO FENCE POST.
- 7. 3/4" X 10' COPPER CLAD GROUND ROD BONDED TO BARE COPPER WITH EXOTHERMIC WELD. GROUND POST AT 4 OPPOSITE CORNERS OF ARRAY AND ONCE IN CENTER OF EACH LONG SIDE OF FENCE.
- 8. FLEXIBLE GROUND BRAID SECURED TO GATE WITH EXOTHERMIC WELD.
- 9. GATES SHALL BE BONDED TOGETHER.

GENERAL NOTE:

- 1. ALL FENCE GROUNDING POINTS SHALL BE LOCATED <u>WITHIN</u> FENCE PERIMETER.
- 2. GROUND ALL GATE POSTS.

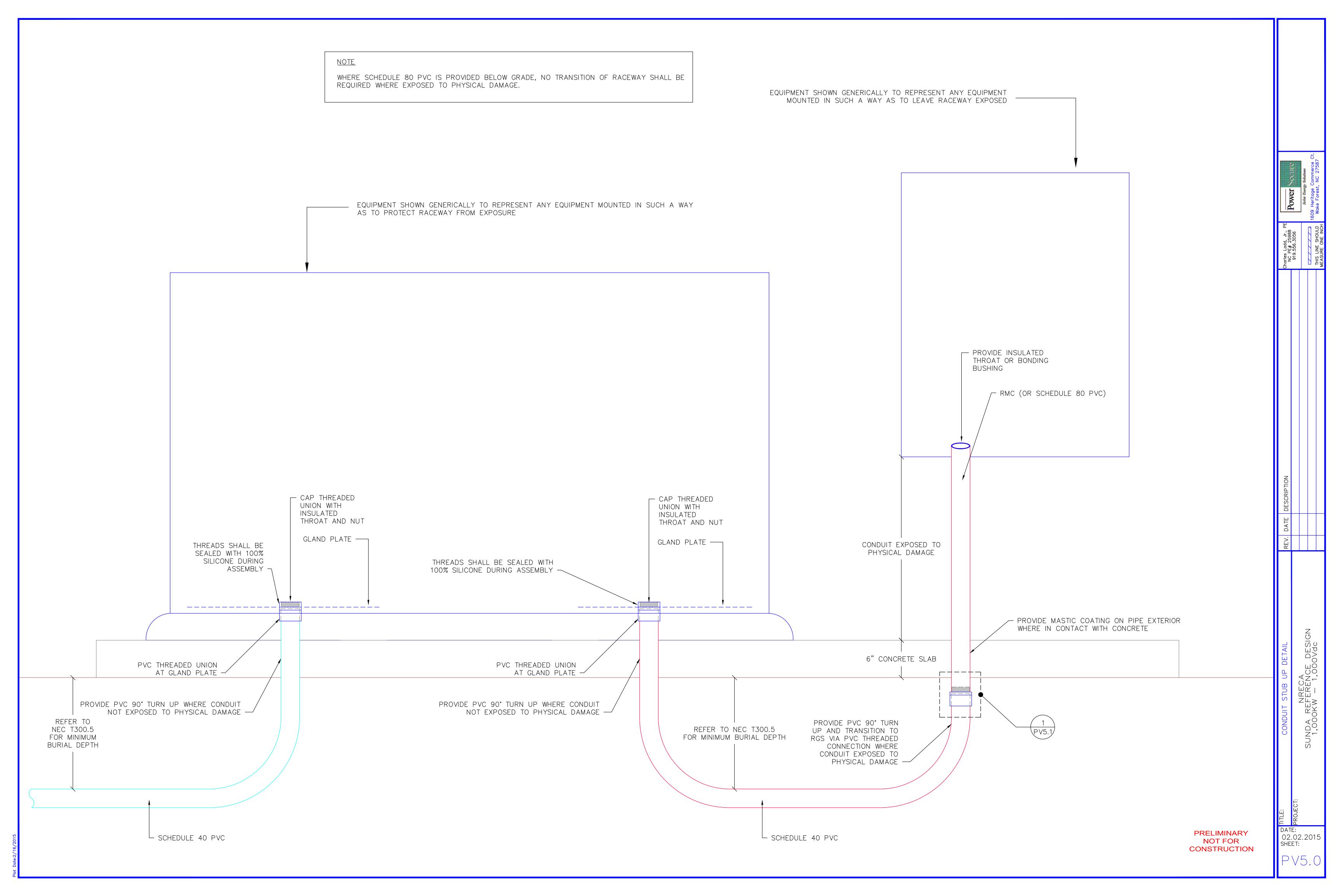


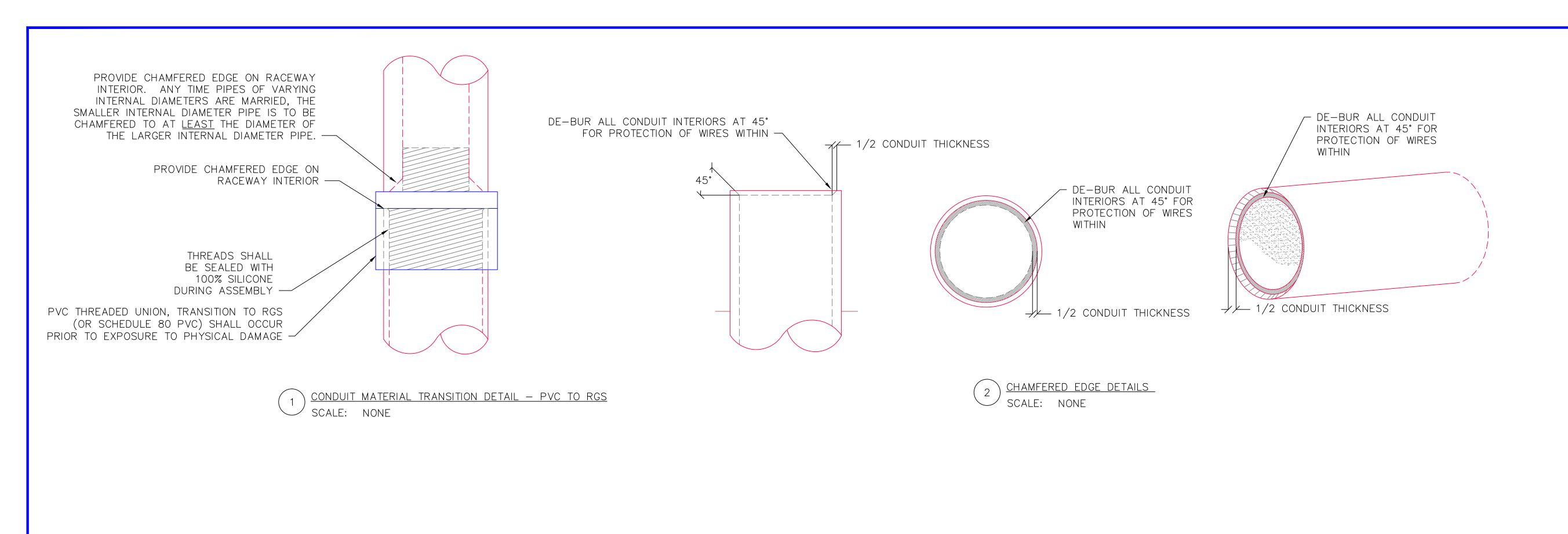
PRELIMINARY NOT FOR CONSTRUCTION

PV4.1

02.02.2015 SHEET:

NRECA REFERENCE DESIG OKW — 1,000Vdc

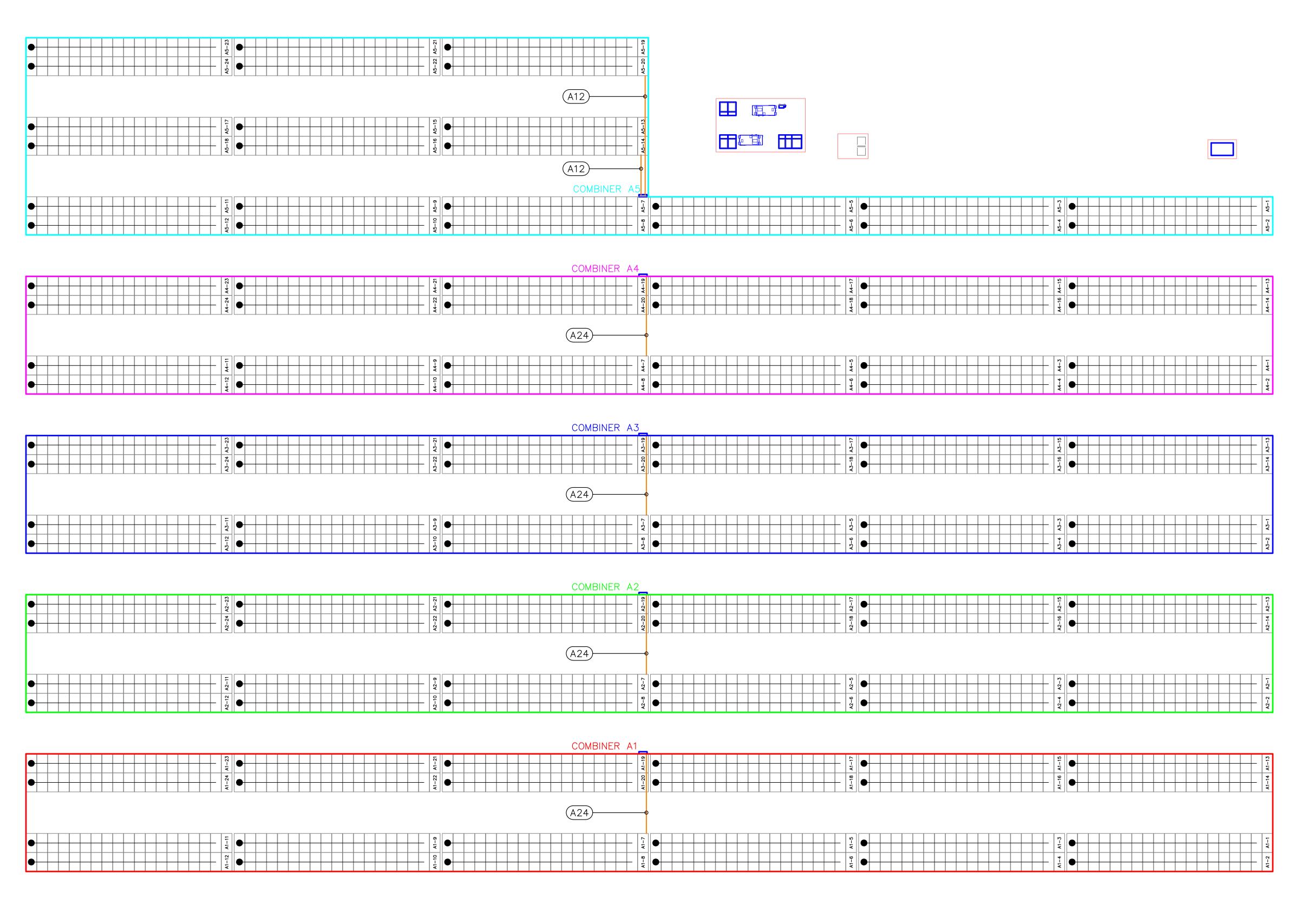



NRECA Reference desi NKW - 1,000Vdc

PRELIMINARY NOT FOR CONSTRUCTION

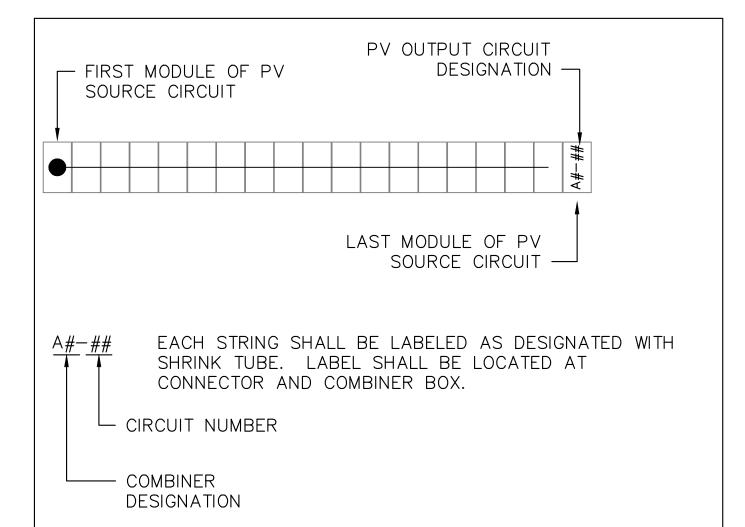
PV4.

02.02.2015 SHEET:

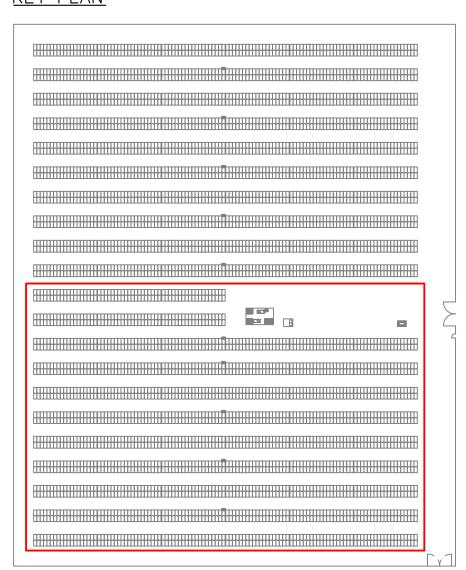

NOTE:

ALL CHAMFERED EDGE DETAILS APPLY TO FIELD-CUT PVC ONLY

PRELIMINARY
NOT FOR
CONSTRUCTION


DATE:
02.02.2015
SHEET:

PV5



STRINGING PLAN - ARRAY A

SCALE: 1/16"=1'-0"

KEY PLAN


STRINGING PLAN - ARRAY A

NRECA
SUNDA REFERENCE DESIGN
1,000KW - 1,000Vdc

REV. DATE DESCRIP

02.02.2015 SHEET: PV6.C

PRELIMINARY
NOT FOR
CONSTRUCTION

KEY PLAN

1 STRINGING PLAN - ARRAY B
SCALE: 1/16"=1'-0"

PRELIMINARY NOT FOR CONSTRUCTION E E DATE: 02.02.2015 SHEET:

REV. DATE DESCR

2/16/2015

PV6.1

NRECA Reference desi okw – 1,000Vdc