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Background and Problem Statement

« Background
* Hosting capacity analysis (HCA) determines the maximum amount of PV that can be installed at
various locations on the grid without adverse effects on the distribution network and without requiring
network upgrades. The outputs are often published in hosting capacity (HC) maps: a visual
representation of the hosting capacity across the system.
* Problem 1: rapidly growing DER interconnection requests
« Some Co-ops are seeing 1-2 solar interconnection requests per day.

« These Solar photovoltaic (PV) system costs are now dominated by non-hardware or “soft” costs -
e.g. customer acquisition, permitting, and interconnection costs.

« Heavy work-load and time-consuming for consumers & engineering to process interconnections

 Problem 1: increasing interest & mandates around generation of hosting capacity maps
« Public-facing hosting capacity (HC) maps have been key factors to reducing solar soft costs

« They enable streamlined interconnection processes and direct access to siting and permitting
data for stakeholders and decision-makers

* |Incoming mandates for utilities to create them from state regulators

75 Years of Service

€2 NRECA o

America’s Electric Cooperatives



The Problem With Traditional Hosting Capacity

» Conventional model-based HCA methods are time-consuming and
computationally intensive, making them impractical for many
utilities and coops

* Require iterative simulations on detailed distribution system
models = long computation times

* “The time needed for distribution analysis models doing any type
of iterative analysis takes too long to run.” - California Public
Utility Commission

* Accuracy of the HC solution is dependent upon the accuracy of
the model, which are prone to errors

» Lack the necessary resolution and functionality to evaluate
advanced inverter capabillities or flexible PV interconnections
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Model-Based HC Definition

Conventional model-based HCA:

* Model — Based HCA accuracy depends on accuracy of distribution network model

 Network model consists of various components that all must be modeled accurately
« Component models each have a variety of parameters and assumptions

* Models rely on human input and are prone to errors (e.g., network upgrades don’t make it into the model
or customers are connected to the wrong phases)

« Secondary networks models are often unavailable or oversimplified

« Modern distribution networks are becoming increasingly complex, making it more difficult to maintain
model fidelity
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Model-Based Hosting Capacity Error Potential

Conventional model-based HCA:
« HCA accuracy is highly sensitive to modeling errors [1]
» Errors can have local or feeder-wide impacts

« Worst-case “snapshot” style analyses can significantly underestimate PV hosting capacity

. A1 A2 A3 A4
Model Error Scenarios 7 - 7 1.0
# Error Type . . .
A.1| Service Xfmr Size 10 - | No Time-Series
Ao| Xfmr/Customer § S 5l : Analysis |
Pairing g = R
A3 Missing Existing 42 ot % i
' PV o .
— — 8 L |
Missing Existing o 51 T T 1
A4 S i |
PV w/ Volt-VAR > E
AS Phase Labeling = 10 ¢ + |
' Errors 2 15 | |
A6 Service Line = z + ‘f
Leggths g -20 [ Mislabeled Unknown Service i .
A7 Substation LTC g Phases Line Parameters +
' Malfunction 4 : : '
AS Capacitor Impact of poor distribution models on hosting
' Malfunction capacity estimates for each residential customer
-100 . .
] ] ] (generally 10-30 kW hosting capacity)
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Our Solution: AMI-Based Hosting Capacity

Can we extract locational HC limitations from smart meter data without a network model?

* Yes: scalable, data-driven algorithms based on statistical analytics and physics-informed machine learning
techniques can calculate the voltage- and thermal-constrained HC at smart meter locations

* Needs only P,Q,V readings from each input smart meter (can work at lower fidelity without Q)
« 1 year of data required, 15-minute intervals are ideal but 1-hour intervals will work
« Software developed to calculate capacity and generate hosting capacity maps
How does this help the issues with model-based methods?
* No power-flow circuit model required
* Not impacted by modeling assumptions/errors
« No simulations required => faster and more scalable than model-based methods
« Reduced computational burden means HC maps updated more frequently
* More practical to implement
 Any changes to the distribution network are inherently captured in the smart meter data

« Historical AMI provides time-series hosting capacity analysis of operations during the entire year instead
of just extreme points

75 Years of Service
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AMI-Based Hosting Capacity Benefits

Smart meter data is passed directly into the model-free HCA tool

« Entirely Data-driven algorithms are applied to calculate locational solar HC subject to voltage and thermal
constraints, HC map can then be generated for that location

Any changes to the distribution network are inherently captured in the smart meter data
* |.e., the approach is robust to phase changes, network upgrades, etc. without user intervention
« Captures low-voltage secondary network characteristics, which are often missing or over-simplified in utility models

No simulations are required = much faster than model-based methods

* Reduced computational burden means HC maps can be updated more frequently to keep pace with increasing
levels of interconnection requests

Can accommodate both static and timeseries hosting capacity analysis
- Static: limited by any violation at any time during the year

 Timeseries: relaxes constraints to allow for some violations to occur (aligned with standards that allow temporary
violations)

Useful for streamlining behind-the-meter (BTM) interconnection requests
* Model-free HCA results can be used as a screening method (as opposed to existing “rules of thumb”)

75 Years of Service
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Project Software Available on OMF.coop

« Algorithms developed for the project have been Data-Driven Algorithms
incorporated in the web-based modeling platform
Open Modeling Framework (OMF) at omf.coop.

OMF.coop allows utility access to advanced
algorithms and modeling tools via easy graphical
interface

* Free and open source

« Can run algorithm on-demand

 |nput via file upload

* Visualization, data conversion, and model
management tools in place. - —a—

« 250+ utilities and vendors throughout the US already o
active on the platform
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Video Demonstration and Documentation of Software

Video Demonstration [1] Documentation [2]

ece O - & & o & drive.google.com/file/d/17_9g5eCOi TYiBS7NXTVvinjview ¢ ® & b

eoe M+ < & & 2 & github h apacit e

del0.4 - NRECA MOHCA Hosting Capacity Analysis Video.mpa - Google Drive
S oo ey " o [ Models ~ hostingCapacity - dpinneyfomf Wiki

= O dpinney / omf Q Type (/) to search 8 - + -0 1 & ’

fox Dec 17 03:32
<> Code (O Issues 1 19 Pullrequests () Actions [ Wiki (@ Security 3 |~ Insights 3 Settings
Open Modeling Framew X | OMF GeoJSON Editor

() O D localhost: . )
Models ~ hostingCapacity o

David Pinney edited this page on Sep 9 - 18 revisions

Introduction - Pages @)
The hostingCapacity model calculates hosting capacity for DERs. Find a page.
Two methods are available: » Home

‘A model-based or "Traditional" circuit-based option
An AMI-based or the "Model Free Hosting Capacity" ( MoHCa ) option

Dev ~ Architecture Notes

Dev ~ Deploying the OMF Web Ser...
AMI-Based Inputs

Dev ~ How to Create Your First Mo...
CSV files are used to input meter data with 5 colums: [busname, datetime, volts reading, kwWatts

reading, kVAR reading]:

Dev ~ How to Debug a Gridlab Model

busname: any string Dev ~ HTTP API Container
datetime: YYYY-MM-DDTHH:mmZ

volts reading: any float/decimal, must be actual not PU
kW reading: any float, avg over the measurement interval

kVAR reading: any float, avg over the measurement interval

Traditional/Model-Based Hosting Capacity By Bus

Dev ~ Installation Instructions

Dev ~ Mac OS X GLD Install Instruc...

Dev ~ Not: librateFeeder.,
A minimum of 1 year of readings at the hourly level are required to run the model (i.e. 8,760 time steps). eV ~ Notes on callbratereeder.py

Performance can be improved by user higher resolution data, for example 15-minute intervals (35,040
time steps).

Dev ~ Packaging the OMF for Distri...

Models ~ anomalyDetector
Example of .csv input file:

Models ~ circuitRealTime

bus1,2019-01-01700:00Z,124.8201353,3.907200098,0.712799966 Q@ N
busl,2019-01-81T00:15Z,124.589564, 4.658400059,0.686399996
bus1,2019-01-01700:30Z,124.6299914,4.963200092,1.051200032

Models ~ commsBandwidth

Models ~ cvrDynamic

Models ~ cvrStatic

Model-Based Inputs

Show 44 more pages

The potential maximum kW threshold that would be added to the system

75 Years of Service c . - .
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https://drive.google.com/file/d/17_9g5eC0i6pHecsnSuxTYi6S7NxTVvln/
https://github.com/dpinney/omf/wiki/Models-~-hostingCapacity

Core MOHCA Algorithms also Available in mohca_cl

« Simple python package with command
line interface implementing core A s
algorithms R p—— ”

MOdei-free Hosting Capacity

« Hosted on GitHub at il R
Update test_ubuntuyml 2 months 390 @ Readme

B github/workfiows

& dpinney /mohca_cl Private @unwatch 1« Y Fork © Starred 1

https://github.com/dpinney/mohca_cl e i
* Allows easy integration into ,.q.: —
commercial and existing tools. S AR

mohca_cl Overview

* Project team open to moving R, |

electric distribution networks, It utiizes AMI data to calculate hosting capacity without

the need for a circuit model. This approach has significant speed and accuracy

additional functionality into this B e S e o

(Screenshots, team, copyright, etc. go here. This is just a stub.)

package (e.g. support for circuit i

With Python 3 installed: pip install
i s://github.com/dpinney/mobca_cl/

| | gitehteps:
l I I O e S u NB: the above won't work with a private github repo yet, in the meantime just git clone

the repo and run python3 setup.py develop to install the dependencies and add it
to your python path
Usage

; On the command line:
75 Years of Service

Where algo_name is one of {lanl, lanl2, gatech} (rename later). | Pg 1 2
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https://github.com/dpinney/mohca_cl

The MOHCA Project, Federally-Funded Research

3-Year Project funded by DOE SETO “Smart Meter Data: A Gateway for Reducing Solar Soft
Costs with Model-Free Hosting Capacity Maps”

aka, Model-free Hosting Capacity Analysis (MoHCA)

Objectives Achieved

(= 0) /- N

* Develop scalable algorithms for |terat.ve

estimating the voltage- and thermal- -~ - N
constrained HC at smart meter locations  igh accuracy {f’ Moderate 1 "o &rd madeling
. . P . . rid models are simulation times || required
* Algorithms for identifying optimal inverter accurate “No simulations
Settlngs f:gre‘;wres detailed, —Cgtre‘;:uires detail_ed, \—New functionality v
* Evaluating hosting capacity as a time- Sl sty O cons:
. . 3 3 - Requires smart
series, instead of considering a handful 'm,‘;’t",gnt,mes v e e
of worst-case scenarios that may ) ] )
underestimate HC Y [r'
75 Years of Service MOdEl-BaSEd MOdEI'Free

& NRECA o
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 Form Industry Advisory Board

» ldentify 5 test circuits

 Initial development of voltage-
constrained and thermal-
constrained algorithms

 Initial integration into the OMF
and mohca_cl to allow utilizes to
run algorithms with their own
data

75 Years of Service
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Task 2-5

Perform hosting capacity
analysis for co-ops on
circuits

Continuous updates and
integration of hosting
capacity algorithms as
testing goes on
Comparison of model-
free and model-based
Upgrade front-end
integration for
comparison analysis

1
Task 4-6

Further testing for
refinements and
enhancements

Get stable version of model-
free hosting capacity
Develop algorithms for
assessing impact of
advanced inverter functions
Upgrade frontend for
advanced inverter operations
Introduce continuous
analysis of hosting capacity

for coops | Pg. 14




Task 2 - Develop Algorithms for
Voltage-Constrained Hosting
Capacity Analysis
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Conventional Model-based HCA Method |

Main Objective: Calculate baseline locational* HC results using a conventional, model-based approach
Feeder Model in

Native Format Raw AMI Dataset

Model-based Locational HCA:

1. Run yearlong quasi-static time-series (QSTS) simulation without PV
a) Record customer voltages and transformer loading time-series

2. Add PV to any customer premise

3. Att=0:
a. lteratively increase PV size, solving the power flow each time

Clean data, b. Record max PV size w/o any voltage or thermal violations

Create n profiles 4. Move to next time point (e.g., t=t+15 minutes) if there is one
from P and Q data

Meter n:
P, Q measurements
(>=1yr @<=15 min. res.)

Convert
to OpenDSS

a) Repeat steps 3a and 3b
Repeat steps 2 through 4 for all customer premises

Model w/ AMI
profiles for all loads *Determines how much PV can be installed at any customer premise
before voltage or thermal issues occur, providing actionable data to
streamline interconnection requests. If the system changes (e.g., due to
equipment upgrades or PV installations), the locational HCA must be re-
run.

75 Years of Service
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Conventional Model-based H-CA Method 2

Customer N

Voltage: ANSI Range A
Voltage: ANSI Range B | |

Thermal: 100% kVA
rated
. A Thermal: 110% kVA
I

80.0 A{WV rated
70.0

90.0

Thermal: 120% kVA
rated

50.0

40.0 TWA VW, LAl A A AA AN

30.0

Max. PV Injection (kW)
3
o

Jun 14 Jun 15 Jun 16

<III

<III

The time-series results can then be post-
processed in various ways (see table) to
determine a final HC value for each
customer premise

75 Years of Service

&2 NRECA
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Model-based Locational H-CA Objective:

1. Run yearlong quasi-static time-series (QSTS) simulation without PV
a) Record customer voltages and transformer loading time-series

2. Add PV to any customer premise

3. Att=0:
a. lteratively increase PV size, solving the power flow each time
b. Record max PV size w/o any voltage or thermal violations

4. Move to next time point (e.g., t=t+15 minutes) if there is one

IR a) Repeat steps 3a and 3b

5 '+ Repeat steps 2 through 4 for all customer premises

Example HCA Constraints
Hrs Hrs Hrs Hrs
Scenario i Vi Outside Vi Outside Tiim Outside | '"™? Outside
(%KVA) (%KVA)
vIim1 Tlim1 Tlim1
False 1.05 0 1.058 0 120 0 150 0
2 True 1.05 0 1.058 0 120 0 150 0
True 1.05 87.6 1.058 0 120 87.6 150
| Pg. 1%

* True = only consider time between 09:00 — 15:00




Model-Free Regression Algorithm Overview

Main Objective: Develop algorithms that derive a customer's maximum PV interconnection size,
according to voltage and thermal constraints, using only that customer’s smart meter data.

Algorithm Inputs: Algorithm Outputs:
« Customer smart meter measurements * Voltage-constrained HC (V-HC)
« (P, Q, V) starting with 1-year at 15-min resolution * kW of PV that can be installed before that customer
«  Meter location info will experience voltages outside of limits
. Utility thresholds  Thermal-constrained HC (T-HC)
- Voltage limit (e.g., ANSI) « kW of PV that can be installed before the service
« Threshold limits (e.g., overload capability) transformer will be overloaded

Assumptions:
* No system model or topology information is available

« Purely data-driven methods to determine transformer groupings and secondary system topology can be leveraged
« Some now included in the OMF already

Limitations:

« Customer’s AMI data only provides information on the potential local impacts of the interconnection. Things like substation
transformer rating and transmission hosting capacity constraints have to be brought in separately.

» Other impacts, such as protection, are not considered

75 Years of Service
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Input and Output Schema

Regression Model-Free Algorithm

Input Schema Output Schema
datetime v_reading kw_reading | kvar_readin kw_hostable
g
50061 2019-12- 249.3867 0.6474 1.282715 50061 2019-12-
31T20:00Z 31T20:00Z
50061 2019-12- 248.9600 0.6696 0.292835 50061 2019-12-
31T20:15Z 31T20:15Z
50061 2019-12- 249.1022 0.6588 1.395352 50061 2019-12-
31T20:30Z 31T20:30Z

75 Years of Service
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Model-Free Regression VHC Introduction

Voltage Sensitivity Calculation

Load in data:
Regression analysis of historical L
load power and voltage S
measurements, gives you dV/dP, Estimate o, Estimate o
dVqu .R eSrTr:w(;;lle;Pvalues .R esr?n?l/le:.—_gvalues
e  Small -PFvalues e Large -V outliers
* |.e., sensitivity of the customer’s « Large -Voutliers
voltage to changes in power | Aoy i Aoty e
- Use that sensitivity to determine the ' am
max allowable PV injection before a Set =
voltage violation occurs for that the better fit

customer (i.e., V-HC)

Load in data: Calculate kW, Apply HC criteria
V, Orinar using eqg. (3) to kW,y,ax

m Pg. 20

75 Years of Service
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[2] J. Azzolini, M. Reno, J. Yusuf, S. Talkington, and S. Grijalva, “Calculating PV Hosting Capacity in Low-Voltage Secondary
Networks Using Only Smart Meter Data,” IEEE Innovative Smart Grid Technologies Conference (ISGT), 2023.



Regression Results Against 2 Datasets

* Regression-based V-HC algorithm
developed and tested on 2 different

HC Metric Dataset 1 Dataset 2
smart meter datasets MAE < 536 KW 530K
* The model-free algorithm was within Max. Error 2.84 kW 7.65 kW
0.3 kW Of the model-based HC Locations <1kW Error 96.6% 95.8%
results, on average S / — ‘ .
+ Within 1 kW at 96.6% and 95.8% of Saof ot g e g
customer locations for the two datasets §15_ o S8 ] §15_ o
* Higher errors were observed for some 8 0l > 2 N 8
locations s | =
« Confidence metrics can be used to flag = =
locations with poor fits % 5 10 15020 % 5 10 15 20
. ConS|Stent performance for tWO Model-Based HC (kW) Model-Based HC (kW)
different datasets
’ 75 Years of Service
% NRECA g2
2] ﬁr.“xizczaglFﬁfﬁ.%%%?‘]‘.’?usuf, S. Talkington, and S. Grijalva, “Calculating PV Hosting Capacity in Low-Voltage Secondary Networks Using Only Smart Meter Data,”

IEEE Innovative Smart Grid Technologies Conference (ISGT), 2023.



Regression Results - Measurement Noise

* Both the model-based and model-free approaches

were highly sensitive to measurement noise

* Errors introduced by the model-free method (AHC)

were consistent even as noise increased

400 | | Meter Class MAE(AHC)
m 0.0 0.0 0.26 kW
c o5 0.5 0.20 kW
2300}
1]
o
o°
L
© 200 f
S
[]
Ke)
£
3> 100
Dataset 1

2

0

2

HC Difference Per Location (kW)

P
57

75 Years of Service

NRECA

2] ﬁr.“xizczaglFﬁfﬁ.%%%?‘]‘.’?usuf, S. Talkington, and S. Grijalva, “Calculating PV Hosting Capacity in Low-Voltage Secondary Networks Using Only Smart Meter Data,”

Number of locations

500

400 ¢

300

200 ¢

100

Meter Class

o0
o5

-2
HC Difference Per Location (kW)

0

IEEE Innovative Smart Grid Technologies Conference (ISGT), 2023.

MAE(AHC)
0.0 0.29 kW
0.5 0.27 kW

Dataset 2

2

3.00 : :
—&8— Model-Based (V noise)
250" © —Model-Free (V Noise) A |
’ Model-Free (P,Q,V Noise)| ¢
< 2.00 <
E‘ 2
Q 1.50 Af
Iu &)
< &
= 100
050 1
Neas Dataset 1
0.00 : : ;
0.00 0.20 0.40 0.60
Meter Class
100.00

% of Customers within 1 kW

60.00 r

40.00 |

20.00

0.00

0.00

Dataset 1

—&— Model-Based (V noise)
- & —Model-Free (V Noise)
Model-Free (P,Q,V Noise)

0.20 0.40
Meter Class

3.00 - :
—&— Model-Based (V noise)
250+ - Q —Model-Free (V Noise)
: Model-Free (P,Q,V Noise)
)
— I |
E 2.00 o
~— A G
150
y g
= 1.00 A S
0.50 r ’
<><><>O Dataset 2
0.00[ : : :
0.00 0.20 0.40 0.60
Meter Class
100.00 7 &&= T T
E Dataset 2
~ 80.00 r
£
=
3 60.00
4
[
£ 4000}
k7]
S
w 20.00 {—&— Model-Based (V noise)
g - & - Model-Free (V Noise)
° Model-Free (P,Q,V Noise)
0.00 :
0.00 0.20 0.40 0.60
Meter Class
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Model-Free DNN V-HC Algorithm Introduction

« Data-driven models learn how changes in power consumption impact the voltage
« Correlations between historical P, Q, V data and hosting capacity
« Use that model to predict the max PV size that customer can install without voltage violations
» Utilizing Convolutional Neural Network + possible physical-informed elements
* Inputs — an “image” per customer
» 3x35040 (p, g, v by time ) or some other method to compress time into more meaningful
physics-based statistics
* Fortimeseries HC — provide irradiance timeseries
» Training data — baseline hosting capacity for 10, 000 customer training samples
* Repeat prediction for all customer locations on a feeder

ML Training
HC (kW) > ‘

o “ Machine Learning

= :

“ el

= ©®

=0 \V/
’ 75 Years of Service
'ﬁ/ NRECA Irradiance P.Q.V, Irradiance Pg. 23



DNN V-HC Objective and Steps

Model-Free DNN V-HC Algorithm Objective
« Train a deep neural network (DNN) to predict AV given AP and AQ
 DNN can be trained for

e 1)a group of customers served by the same transformer

e 2)a single customer

« After training, the DNN can predict voltage impacts from PV injections, which can then be used to
calculate V-HC _

dP, dQ (model
dP, dQ and dV for the input)
customers
dV (model Predicting dV for the
Step PEIE Step SEEIE
1 Preprocessing Hyperparameter

Post Processing

Training and Tuning

Validation Spllt Parameter -
75 Years of Service SeleCtion

-
& NRECA

3] AmerFaYBISTPe SRS FBMRI, and M. Reno, “Predicting Voltage Changes of Low-Voltage Secondary Networks Using Deep Neural Networks,” IEEE Power and Energy
Conference at lllinois (PECI), 2023. Under Review.
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DNN V-HC Algorithm Architecture

e Model Free

DNN Architecture: . Model Based

1.04

dense_input | input: | [(None, 12)]
InputLayer | output: | [(None, 12)]

l [ Activation functions] 2

5
dense | input: | (None, 12) %
(o))
Dense | output: | (None, 60) i 1.00
l » tanh s
dense 1 | mput: | (None, 60)
Dense | output: | (None, 60) out
» RelU
dense 2 | input: | (None, 60) 0.96
Dense | output: | (None, 18) 0 5000 10000 15000 20000 25000 30000 35000
> ReLU Time (15 Minute interval)
dense 3 | input: | (None, 18) USing DNN to pl'edict VOItages:
Dense °“‘1"|“: (None, 12) ReLU « Model trained for 6 customers connected to the same
v ( transformer
dense 4 | input: | (None, 12) « Voltages were predicted for constant 5 kW PV injection
Dense | output: | (None, 6)

at one customer location (customer 97)

*The number of neurons in dense layers * Predicted voltages compared to model-based results
corresponds to the number of customers
?/ 75 Years of service  sharing a transformer (6 in this case)
4 Ame'TaYﬂwfcf%ﬁﬁl and M. Reno, “Predicting Voltage Changes of Low-Voltage Secondary Networks Using Deep Neural Networks,” IEEE Power and Energy
Conference at lllinois (PECI), 2023. Under Review.

| Pg. 25



DNN V-HC Algorithm Setup

Algorithm 1

 Train a DNN for each group of customers sharing a

transformer
Algorithm 2

 Train a DNN for each customer

Testing

 Use each DNN to predict voltage changes associated with a

variety of PV injections

Mean Abs. Percent Errors (MAPE)

of Voltage Predictions

Interpolation Errors

,i%; %\ijﬁj

‘ Substation
Loads
Service Transformer

LTC/VREG

75 Years of Service

//‘

Large

¥  Substation
©  Loads

Test Case Alg. 1 Alg. 2
A(A(‘:.orslgtl;rﬂ source voltage) PR P
%a?ynilr?gsource voltage + LTC) R 20
((\:/.a?yiglzesource voltage) 17.22% 17620
Extrapolation Errors
Test Case Alg. 1 Alg. 2
A(A(‘:oorslgltl;rﬂ source voltage) 1.78% e
%a?ynilr?gsource voltage + LTC) SIS pri07
((\:/.a?y?:lzesource voltage) el 19.14%
| Pg. 26

3] AmerFaYBISTPe SRS FBMRI, and M. Reno, “Predicting Voltage Changes of Low-Voltage Secondary Networks Using Deep Neural Networks,” IEEE Power and Energy
Conference at lllinois (PECI), 2023. Under Review.




PINN Algorithm Overview

Physics-Inspired Neural Network (PINN) for voltage-constrained HC [2]

Model Training Results
: Algorithm 1 PINN Model Training Algorithm i . ) Y ,)\ A\ 5
Physics-inspired Module Require: Training set D, = { Vo, Pom, Qs }, initial learn- By WY N 4
. oo ing rate (LR) «vg, decay factor k, momentum ¢ , mini-batch # 1o - a

size N}, number of epochs 7

: Initialize the parameters of network Fjp as © = {92,03}
. by designed rules; update initial LR as o < ag

o m/wM ”““M S [

>
z
=

(&)

: for epoch =1 to T do
3: fori=1to [N/N;] do

4: Select N, example pairs from shuffled D;, forming
mini-batch S; = {p;", q;", v;" é\' L

[SRE

JW /VM””/ " ““W\/“f“ i U W \Mﬁﬂf\/

Dayl  Day Day3  Day4  DayS  Day6  Day?  Day§  Day9 Dayl0 Dayll Dayl2 Dayl3 Dayld

‘ 5: Compute gradient of the loss function with respect ‘ .
to network parameters as Customer node voltage calculation results
- DaaFlow VoJ(0;S;) ={ Vo,T.Ve,T} ERROR METRIC SUMMARY = VIAE = MAX ERROR
. 6: Editing gradient of physics-inspired module based on 7.00
Q2 ‘D O 6 Celodiation weight symmetry averaging as 3600
IL:3n HL;:2n HL;:2n OL:n Input/Output < j - 1 (V j ‘v jf) ii.gg
" Voltage Variance Capture Module Data O 2 _9" O éz:oo
£: Tanh(") 7 Update the parameters using SGD update rule: %2_00 | | | |
z fi: Linear Activate D+ v+ (1-¢VeJ(6;S;) ;gg PP T ITTIrF I..I I_Il --I. Il__.II.I _II
. IF“"C‘i“" 0 0-—ab b Vo (0;Si 1) 13 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
: Input Layer AMUEC3 NODES
8: if [a/e] == 0 then
% A “© HL: Hidden Layer « ¢ ka > decays LR « by k every e epochs Locations(%)
Mpi 2S00 KLy Ol OL: Output Layer $:  endif Error Metrics  MAE(kW) Max MAE(kW) i
' i 10:  end for <1 kW Error
11: end for Nodes Avg 0.89 1.57 87.72%
ic<-i i 12: return Fy R . R
Structure of IP hysics |Esp|red : Maximum accessible PV Capacity
Neural Networ Customized training algorithm of estimation results (taking AMU model as
75 Years of Service the designed model an example)
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L. Liu, N. Shi, D. Wang, Z. Ma, Z. Wang, M. J. Reno, J. A. Azzolini, “Voltage Calculations in Secondary Distribution Networks via Physics-Inspired Neural Network Using Smart Meter Data,” under review.



Model-free Algorithms Accuracy

* More data = better accuracy [2]1 . A Azzolini, M. J. Reno, J. Yusuf,
. . . S. Talki , S. Grijalva, “Calculati
» Regression-based? and PINN-based® methods integrated in OMF P Hosting Capacity In Low Voltags

Secondary Networks using Only

. % of Locations Smart Meter Data” in IEEE Innovative
Required Inputs S1kW E Smart Grid Technologies (ISGT-NA),
rror Washington, DC, 2023.

[3] L. Liy, N.Shi, D. Wang, Z. Ma, Z.

Constant Sensitivity> Max V 1.49 20.74 50.88% Wang, M. J. Reno, J. A Azzolini,
“Voltage Calculations in Secondary
- i Distribution Networks via Physics-
Statistics-based AdaBoost - V> Min, Max, Std o 1.25 15.57 22.50% Inspired  Neural Network Using
V) Smart Meter Data,” IEEE Transactions
g on Smart Grid, 2024.

Statistics-based AdaBoost - PV> Wi, 1595, el @i 0.98 14.80 17.74% [4] ). Yusuf, J. A Azzolini, M. ). Reno,
(P V) "Predicting Voltage Changes in Low-
: Voltage Secondary Networks using
Statistics-based AdaBoost - PQvs  RARIMEASEE 0.95 14.35 17.83% Deep Neural Networks' in IEEE
( Q, V) Power and Energy Conference at

TiE-seres lllinois (PECI), Champaign, IL, 2023
- _ _ 4 ) 0 [5] J. Yusuf, J. A. Azzolini, M. J. Reno,
Model-Free Approach - DNN-based (PO V) 0.78 2.49 30.40% "BV Hosting Capachy Estimation I
Time-series Low-Voltage Secondary Networks
Ay 2 - 0 Using Statistical Properties of AMI
Regression-based P.Q,V) 0.26 2.84 3.40% Datar IEEE. ofovative Seart. Grid
. Technologies Latin America (ISGT-LA),

PINN-based3 ) 0.89 1.57 12.28% 2023

(P.QV)
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Model Free Additional Enhancements

Leveraging Statistical Properties of AMI data for model-free HC calculation [1]

 Challenges:

« Data available for limited timestamps

« Unavailability of all P, Q and V measurements

« Unavailability of AMI devices for all the locations
« Solution:

« A simple, easy-to-implement yet reliable method is needed that can provide a ballpark PV HC
estimation for any customer and overcome these limitations.

Constant Sensitivity Approach Ensemble Approach

4 N craricr .
Input: Maximum Voltage Inpqt. Statistical Properties
(min, max, std, mean) of

Output: Hosting Capacity Available AMI Data

7S Yesorserice | . Output: Hosting Capacity

€2 NRECA + ..
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[11 J. Yusuf, J. A. Azzolini, M. J. Reno, “PV Hosting Capacity Estimation in Low-Voltage Secondary Networks Using Statistical Properties of AMI Data,” IEEE Innovative Smart Grid Technologies Latin America (ISGT-LA), 2023.



Model-Free V-HC - Ensemble Approach

Ensemble Approach

Split the dataset into training and
testing

Generate the predictors (selected
features) and responses (sensitivity
values) for training data

Use the AdaBoost algorithm to
develop the model

Deploy the model for testing data
and estimate the predicted HC
where HC=predicted sensitivityx
abs(1.05-Vmax)

75 Years of Service

NRECA
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P
74

Divided into 3 categories:

Predictor Set 1: Smart meter has all P, Q, and V measurements; so all 12
features are used

Predictor Set 2: Smart meter has only P and V measurements; so 11 of 12
features are selected; removing 24V/,s (mean)

Predictor Set 3: Smart meter has only V measurements; so 5 of 12 features are
selected; only utilizing the AV (mean, max, std), V (mean, std)

16

14

—_ Ju—
e oe + =
> w o cwmos
> sme we oo

Absolute Errors (kW)
(o]

Predictor Setl Predictor Set2 Predictor Set3
| Pg. 30

[11 J. Yusuf, J. A. Azzolini, M. J. Reno, “PV Hosting Capacity Estimation in Low-Voltage Secondary Networks Using Statistical Properties of AMI Data,” IEEE Innovative Smart Grid Technologies Latin America (ISGT-LA), 2023.



Model-Free V-HC - Irradiance

Static hosting capacity worst
case assuming irradiance is
always full:

. (1.05—max(V(t)))/ dV/dP

Timeseries Hosting Capacity
« V_withPV(t) = V(t) +
* PVsize*Irradiance(t)*dV/dP

* Increase PV size until you
reach amount of allowed

Historical AMI Data
for a Customer

Voltage (pu)
o
& =

>
©
©

violations during the year for 0.97 |
V_With PV 0.96 - @] ©

Hosting Capacity "0 10 20 30 40 50 60
75 Years of Service (19 kW) rawer (kW)
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Model-Free Discussion

® Promising initial results for the model-free approaches

® Significantly reduced computational time. Results were generated in minutes, where model-based results
required multiple days of simulations

® Regression V-HC:

®* Comparable accuracy to model-based results

®*  Much faster than model-based approach

* Tested on two different feeder models with several different AMI datasets
® DNN V-HC:

®* Tested on multiple circuits and datasets

®*  More accurate when customer-transformer groupings are known

®* Scalability concerns, less accurate for larger or more complex circuits
® Service Transformer Estimation:

®* Potential for high accuracy

* R estimates were slightly better predictors than X estimates

75 Years of Service
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Task 3 - Develop Algorithms for
Thermal-Constrained Hosting
Capacity

& NRECA g 3
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Thermal-Constrained Hosting Capacity (T-HC)

Two Methods:

® Parameter Estimation Approach

® Use measurements from multiple customers
to estimate low-voltage topology and
impedances, along with the distribution
service transformer impedances

® Transformer impedances can then be used to

estimate transformer size (kVA)

¢ K. Ashok, M. J. Reno, D. Divan, “Secondary Network Parameter
Estimation for Distribution Transformers,” IEEE Innovative Smart
Grid Technologies (ISGT), 2020.

® Machine Learning Approach

® Same as other slide where supervised ML
algorithms learn to correlate timeseries data
with hosting capacity — this time the training
data is the thermal-constrained hosting
capacity

75 Years of Service
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Substation |

Vsec 3

' Xfmr 266 (T3) . Xfmr 209 (T2)
Vsec 2 7

o

Xfmr 103 (Tl).

Rc, Xc

O

Vsec_1

A N

M3.1 M3.2 M2.1 M2.2 M2.3 M2.4 M1.1 M1.2 M1.3
V,P,Q
ranch
Vi—Va=V =IgRy+Ix,Xo — Ip, By — Ix, X1 rxe.
—> Vi kol
Upstream Bus
Vo
—|>VN/'RN;IXN
Branch N
R, Xn
TABLE VIII
TRANSFORMER IMPEDANCE ESTIMATION
Transltl'())rmer Resistance (£2) Reactance (€2)
Actual | Estimate | Actual | Estimate
103 0.0346 0.0370 0.0461 0.0492
209 0.0215 0.0219 0.0307 0.0292
266 0.0346 0.0338 0.0461 0.4394 | Pg. 34
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T-HC Problem Statement and Solution Steps

Problem Statement

 Develop and validate data-driven algorithms to determine
the maximum amount of solar that can be installed before b Gro
exceeding the loading capacity of power delivery
equipment.

Three main steps:

1. ldentify Transformer-Customer Groupings?37-3
. Determine which customers are connected to each transformer

Service Transformer

2. Determine the Transformer kVA Ratings® il

U

3. Calculate the Thermal-Constrained hosting
capacity based on the total load on the transformer and

the power rating
. How much PV can be installed without over-loading the transformer Thermal-constrained HC

75 Years of Service

’ﬁa, MR‘EQ&W M.]. Reno, J. A. Azzolini, “Voltage Calculations in Secondary Distribution Networks via Physics-Inspired Neural Network Using Smart Meter Data,” IEEE Transactions on Smart Grid, 2024. | Pa. 35
g.

PAGAAMRIICRTS FIRERIS, SOPREIAIWEN I0del-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.
[7] L. Blakely and M. J. Reno, “Identification and Correction of Errors in Pairing AMI Meters and Transformers,” I[EEE Power and Energy Conference at lllinois (PECI), 2021.
[8] M.Reno etal, "IMoFi - Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration Final Report," Sandia National Laboratories, SAND2022-0215, 2022.




T-HC Detailed Step Solution Form

« Similar to the V-HC algorithms, the thermal algorithms accept a range of  © I A Azolini, M. J. Reno, J. Yusuf, *A

Model-free Approach for Estimating Service

input variables to accommodate different levels of data availability Transformer = Capacity Using  Residertial

Smart Meter Data," [EEE Photovoltaic

. iy Specialists Conference (PVSC), 2023.
« Some methods require additional GIS data®8, (customer address or [7] L. Blakely and M. J. Reno, “identification
. . and Correction of Errors in Pairing AMI
tranSformer Iat|tUde/Iong|tUde) Meters and Transformers,” /EEE Power and
Energy Conference at lllinois (PECI), 2021.
— [8] M. Reno et al, "IMoFi - Intelligent Model
Stage 1: * Subotat % Substation Fidelity: Physics-Based Data-Driven  Grid
Flag [7] » Transformer Modeling to Accelerate Accurate PV
Errors in ansTorme % PV System Integration Final Report," Sandia National
Transformer . Laboratories, SAND2022-0215, 2022.
Labeling
3 [6]
% . y . { X Subs.tation - I\t =
,: 2 : ::rr;:e Transformer y
Repeat for ) “ g gEEh O Nearby
— each R é‘:ﬁh"
_ Transformer .:w_a:t‘." ":“‘f"j
Stage 2: a) ) AlZgcng
Assign new
"a;rs:z:)':e’ Correct Predictions  Prediction Accuracy
5 Ckt5 583 /591 98.65%
CktS w/PV 584 /591 98.82%

75 Years of Service
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T-HC Voltage Correlation and Clustering

S ?  The accurate number of service

- coupling), wanstormer mamber el transformers in the system is not known a

N— ‘ = priori.

- peason oeatonCofident ;[N + We utilized the voltage correlation between

; y "ereconatcomectset customers to develop a customer clustering

.................. algorithm. CUStomerS within one cluster are
/ ................................ : ;teratlon - dusterms gGenerate v Cust-DTg I connected to-the same transformer.

Slmllarlty based Cluster : :

Merging ,- adjustment h connect groups _<_
P P : « Cluster adjustment and merging process
; iteration limit guided the algorithm to estimate the
L e J transformer number based on clustering
- ‘ ............... e constraints.

------------------------------------------------------------------------------------------------------------

75 Years of Service
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T-HC Algorithm Details

1. Determine kVA rating of upstream service transformer: (4], Peppanen, M. J. Reno, R. .
1. Estimate the low-side voltage of the service transformer [4] ?[;%‘zﬁgsﬁoanngyss'tgg@e@ndary

Circuit Parameter Estimation for

2. Identify nearby service transformers connected to the same phase Model Calibration.” Sandia

i i i Qi National Laboratories,
3. Apply parameter estimation to determine the transformer’s impedance [5] Sy i ot
4. Use look-up table to convert transformer impedance to kVA rating [5] [5] K- Ashok, M. J. Reno, and D.
Divan, "Secondary Netvvork
2. Calculate Thermal-Constrained HC: ISP T SlAR e
Distribution Transformers," in
1. Calculate net kVA timeseries by summing customer AMI measurements 2020 |EEE Power & Energy
Society Innovative Smart Grid
2. Subtract net kVA from kVA rating to find kVA headroom Technologies Conference (ISGT),

17-20 Feb. 2020.
3. Calculate T-HC from the daytime minimum kVA headroom value

o == Vo =V o Rl b Tl
Primary Service R.X 0~ "1 vip t Aadyy 6y
System Transformer VO = Vz T RZIRZ T XZIXZ T
7 NN : ’
% ; () ) : — I~
S 4|7"-\ \\ /.-" / * ﬁ g V,P.Q VO = VN + RNIRN + XNIXN + ENn
v RX ’

75 Years of Serv Figure 15. Secondary circuit tree for parameter estimation
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Test Sets for T-HC Development

 Model Test Dataset: EPRI Secondary Topology Model and EPRI Ckt5 Mode/
« |Input Data: One year of customer smart meter voltage measurements at 15-mins resolution.

EPRI Secondary Topology Model EPRI Ckt5 Model
Y cktS:Power
af A _ AARS AR #
-~
En ﬁ
ﬁ;ﬁ @ 296000
& g & =1}
AN -
=i @ @ ﬁ 294000
B 3E8—® G Caan R R OB R CR CRIO 202000
Symbol  Description ﬁ 290000 -
@ External Grid & AN
} E: Substation ﬁ = 288000 -
Xf ZAN AN AN AN
ﬁ Singiz%ase =t = =N = ‘_xl g
oa =]
@' LTCVREG =i e 2 =yl 286000
@ Service Xfrmer A 2 s v s —
A —B —C ﬁ = @ﬁ ﬁﬁ ﬁ = = = 2225000 2230000 2235000 2240000

F9 1TAID VI ITIVILVE
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T-HC Results for Test Sets

EPRI Secondary Topology Model Simulated Results Groud Truth

Fig: Voltage correlation heatmap for EPRI ST model - S—

3 &3 Iy Gy D

[6]
(7, 8, 9, 10, 11] 2 ist 5 [7, 8, 9, 10, 11]
[12, 13, 14, 15, 16] 3 13, 14, 15, 16]
20] , is 7, 18, 19, 20]

23, 24] 5 21, 22, 2

Customer Index
1B 15

28] 6 is 25, 26, 2

32] 7 is 30, 3

3, 34]

R
R
R
a
g
2

Customer Index

Fig: Maximum complete diameter changes by cluster merging

%0_04‘ ist 8 3 42, 43, 44, 45, 46] is 3 0 42, 43, 44, 45, 46]

« Connecting results of 46 customers to 12 transformers
« Transformer estimation Error Margin =0

« Customer Connectivity Accuracy = 100%

25242322212019181716151413121110 9 8 7 6 5 4 3 2 1

Estimated Transformer Number
73 TEdI> VI dEIVILE

=
‘ﬁ@ NRECA Accuracy = number of totally identified transformers/transformer number | Pg. 40
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kVA estimation example (Ckt5)

« Solve the linear regression problem in [5] using the first 1000
AMI measurements to estimate the X and R values of each

service transformer

« Compare the estimated impedances to the actual values from -
the model

Xfm r-1 O 56764.1
Rlpxl £
] I Vil

Upstream Bus
Vo

(| I j:i‘-"Vz:IRz'lxz

Xfmr-2
R\Z:XZ

Substation
Loads
Service Transformer
56772.1

56764.1

A Xfmr-1
, O

OO0V o ¥

" /Exfmr-2

where I'p = P/V, Ix =Q/V:

L [Rus L Romes BTN X Xesimas | EOr |

Xfmr-1 0.034560 O  0.034819 O

Xfmr-2 0.021504 O  0.021585 Q

OpenDSS Actual
kVA R_ohms sec X ohms_sec
10 0.0979 0.1152
+0.75% 0.04608Q  0.04596Q  -0.26% > 29034 0.0758
: : 25 0.0346 0.0461
37.5000 0.0215 UD3UF
+0.38% 0030720 0030630  -028% — 50 00150 oozp 4

75 0.0092 0.0154




Transformers with Unknown Topology

¥  Substation

P> Service Transformer
¥ Target Xfmr

O  Nearby Xfmr

® Assuming the topology was unknown, estimates of each transformer were calculated from N T : g
“nearby” transformers on the same phase g

® Geographic distance is a proxy for electrical distance; multiple estimates limit the impact 'S i =

of pairing a transformer served by a different branch ' a e : '&!

®  kVA selections for each transformer were made using ‘ )

® Avg. R estimate: 584/591 correct predictions (98.82% accuracy) A )l

\\\\\
__________

® Avg. X estimate: 569/591 correct predictions (96.28% accuracy)

® Best R estimate: 591/591 correct predictions (100% accuracy)
® Best X estimate: 584/591 correct predictions (98.82% accuracy)
MAPE: 0.95% (Best); 3.14% (Avg) MAPE: 1.39% (Best); 3.98% (Avg)
100 | | + ] 1007 + + |
_— 80 [ —
8 2 i iy
5 %0 T 5 50 f
E = £
ey : i
s $ +
£ 1 £l +
(14 X % Sso -
. 20 ¢ T + + I Y "% Substation
’ 75 Years of Service + + P> service Transformer
&/ NRECA“ f
ﬂ Best Avg Best Avg O Nearby Xfmr
® America’s Electric Cooperatives

[6] J. Azzolini, M. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data,” IEEE Photovoltaic Specialists Conference (PVSC), 2023. Under Review.



PINN Model for Transformer-Cust. Connectivity

W, W,
2] - ° ] SEﬁ_Hm -0.000
. Well-trained W,, W, 2 H . . =
& L) 04 " =
[ =t o - 0.075
E % 0.100
& " :
E . E n‘ -0.150
L} i -H

u,
L}
LY -0.00 0.0
L}
- H =005 02
LLL]) B =010 %
", 015
"
2 n, n, 0
" 0
5 u 08
LT 025
10
030

n,

* Due to the designed structure, physics information, e o
. . . o artia W Partial
including the transformer-customer (TC) connection, can ;

13 . . . ” v .E U '.. :- il oos
be learned by the “Physics-inspired Module. o 7 .
* The simulation results of matrices W,, W, , which contain L .. b
the physics information, are shown on the right. - -
. . g . . o TC CONNECTIVITY IDENTIFICATION RESULTS
 According to the W,, W, , a TC Connectivity Identification Simulation Results
method is designed as an Application of the PINN model. * The method considers both load and voltage Modd EPRI 2 Bu AMUBC PGS
data together. Xtmr Number 12 40 584
Customer Number 46 50 1379
. The method is straightforward while showing ¢ 4 Tienifiea 2 20 v
75 Years of Service gOOd performance. Accuracy Rate 100% 100% 97.3%
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Model-free PINN Transformer Capacity Estimation

Objective:
« Determine the rated capacity (in kVA) of all
service transformers on a given radial 1) Aggregation for Service
distribution feeder without any topology Transformer Measurements
information or grid models
Inputs:
« Smart meter data for all customers 2) Pairwise Estimation of Service
* Includes historical P, Q, V measurements Transformer Impedance

» Metadata (e.g., location, phase)
« Customer-transformer groupings

« Lookup table of known transformer types 3) Determination of Service
« kVA, R, and X for each transformer type Transformer Capacity

75 Years of Service
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[51 J. A. Azzolini, M. J. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.



Aggregation for Transformer Measurements

Apply filter to ensure uni-directional power flow from the transformer to
the customers
« This guarantees that LV terminal voltage will be highest

« Estimate Node 1 voltage iteratively using every possible combination of
customer pairs
« Whichever pair has the highest average estimated voltage is selected 3) Determination of Service

Transformer Capacity

Primary Service
Vi—V,) = —R.lp; — Xqly1 + Ry1n, + X1
Ul ) 1PR1 - 1°X1 7 L 2 System Transformer T{C1> "
N ! P $Ea vy
1 N\ \ Unknown
VNode1 = = Z“Vi + (R; +jX;)Ug; +j1Xi)|| g () —D
N \ » Topolo
i=1 \;_&/w/ p gy P?_r Qz' Vz
Rp X;
—>
P3; Qgr V3

75 Years of Service
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Pairwise Estimation of Service Transformer Impedance

 The same parameter estimation approach can be applied YT ——
to calculate the service transformer R and X values JfansiormErESSUrEmEnts
« Since the topology is unknown, multiple impedance
estimates are generated for the target transformer

by iteratively pairing it with nearby transformers
(physically close)

2) Pairwise Estimation of Service
Transformer Impedance

Transformer 1 (Target)

I . G ey Y i Substation
RTll XT1 PT1’ QT1’ VT1 / : Service Transformer
o

Target
Nearby

Nearest Common
MV Bus, V,,,

Transformer 2 (Nearby)
10 Estimates

RTZ' XTZ P1'2; QTZ' VTz
75 Years of Service 17 Estimates — |
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Determination of Service Transformer Capacity

1) Aggregation for Service
. . . Transformer Measurements
* The algorithm then uses a weighted voting scheme

to combine the multiple estimates into a single kVA
prediction, where the best matching R and X values i e e

2) Pairwise Estimation of Service

from the lookup table receives a vote

Substation -— '\ =] I
Service Transformer :x)- I
Target _2 l

; . |

Error = min(lRest - RLookupl + |Xest - XLookupD

« The votes are then weighted according to the RMSE of

the linear regression models 1/(RMSE,)
WE: = Sm(L/RMSED)
- After tallying the votes from the table and the szl T
remaining 11 estimates (not shown):
* Transformer Type 3 = 79%
e Transformer Tvpe 4 = 14¢ Distance from Predicted ID
yp /o Target (ft) Ret (@) Xes @) (Table I) WE®)
* Transformer Type 5 = 7%
375 0.0396 0.0566 3 0.107
* The algorithm was correct since the target 486 0.0561 0.0291 4 0.046
transformer was Type 3 529 0.0576 0.0300 4 0.042
540 0.0525 0.0361 3 0.050
’ 75 Years of Service 544 0.0525 0.0343 3 0.057
/Gﬁ NREC A 587 0.0596 0.0227 5 0.038 4
®
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Thermal Hosting Capacity Summary

« Overall, the algorithm was accurate regardless of existing PV penetration and robust to noise

* (Meter class 0.5 means all measurements were within £0.5% of actual value)
» Class 0.5 corresponds to lowest accuracy allowed by ANSI C12.1-2022

» Errors were distributed across different transformer types

« Total predicted cumulative thermal capacity was accurate within 1.01%

- Substati
¥ Substation ? T:janss:o:'(:er 100 ' ' 350 ' ‘
» Transformer % PV System 3 _+. _g:::: :cv?t:\l?\l) 2 200 Meter Class: 0.5
2; 99 L | dE: I Actual
1) S 250 [N Ckt5 No PV | |
g - [_ICkt5 w/ PV
o g 98/ £ 200
) < =
X% g S 97 % 150
; e -
(¢ [ 100 t
(‘ 5» P 5 2
452 4 :‘:‘\? g 96 | g
4 kry o = 50 1
W e
DT 95 0 | .
a) : 0.0 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 6
Correct Predictions Prediction Accuracy Meter Class Transformer ID
Ckt5 583 /591 98.65%
Ckt5 w/PV 584 /591 98.82%
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Subtask - Timeseries Analysis of
Hosting Capacity
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Timeseries Modeling Introduction

First, determine the largest magnitude of real power (kW) injections that can
be accommodated at each time point

« This step can be accomplished via model-based or model-free methods

- For this example, the voltage constraint was often the most limiting factor,
but some days were limited by the thermal constraint

80 Customer #25 Customer #25
— V-Constrained Limit 80 | Voltage-Constrained Limit
80 [ Th-Constrained Limit 1 T e Thermal-Constrained Limit
70 70 -
s s
~ 60
= =60
O 50+ )
i e
2 40 850
= £
s 30 | X 40
= =
—r—p
20 30 -
10 |
20 -
75 Years of Service

0 1 1 1 1 1 1 1 1 1 1 1 | 1 L
/e/—ﬂl NR CA Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Jul 09 Jul 10 Jul 11
4 E | Pg. 50
®
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Timeseries Modeling Approach

« We can simply look at the minimum of the
two plots

* This is the upper limit of kW injections for
any DER throughout the whole year

 To create a hosting capacity map, we have
to distill this time-series down to a single
value

« The most conservative approach would be
to use the absolute min value to represent
DER hosting capacity

« Absolute min =2.26 kW @ 4:30 am in this case

75 Years of Service
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50 T T : - :
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o
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o

Power Injection (kW)
=
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Timeseries Approach Provides More Realistic Limits

» Taking the absolute min value is likely
overly conservative for PV HC

» We can still model the PV output
conservatively in several ways (e.qg.,
exclude losses, clear-sky, assume sun-
tracking)

* The more info we have about the PV
system means we can reduce the number
of “worst-case” parameters, and get a
more accurate HC value

75 Years of Service

€2 NRECA
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Customer #25
40 + Max Allowable Injection
*  Absolute Min.
35 [ PV output (Sunrise-Sunset)
PV output (Dual-tracking)
| |— PV output (fixed-mount)
30
25t HC=2.26 kW
20
15
10 -
<« HC=7.58 kW
‘¢ HC = 4.75 kW
0 I 1 = I
Oct 17, 00:00 Oct 17, 12:00 Oct 18, 00:00
| Pg. 52



Applying Timeseries Analysis to Full Circuit

Model-based

» Repeating this process for all locations in < 20 | | ¥
modified version of EPRI Ckt5 using the 3‘;15 : ‘%
model-based HC approach: G % |

. Mean(HC_absoluteMin) = 0.40 kW § " T
.‘g 5 + | I | |

« Mean(HC_ sunrise-sunset) = 3.26 kW g i % T N .
« Mean(HC dual) = 4.04 kW O e O G e

- Mean(HC_daytimeMin) = 6.37 kW ¥ o ot oo
.+ Mean(HC_fixed) = 7.55 kW i

« In practice, maybe conservative approach is
fine for general HC maps but bringing in more
details is needed for interconnections

75 Years of Service
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Task 4 - Integrate Algorithms into
an OMF Application
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Open Modeling Framework — https://www.omf.coop

Free and open source electric utility modeling
software

Built by the co-ops and the US Department of
Energy (OE, EERE, ARPA-E)

Offers models to determine:

Benefits of energy storage for arbitrage, peak
demand reduction and asset upgrade deferral

. Cost and financing options for utility-scale
solar

. Cashflow and engineering impacts of
distributed generation

Full distribution dynamic powerflow simulation
(for the ambitious)

Users from 176 organizations (utilities, vendors,
universities) as of June 2017.

75 Years of Service
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OMF Integration - Hosting Capacity

Open Modeling Framework » hostingCapacity » “Hosting Capacity Example”

Users can create an
instance of the
model in the OMF

Model Input

Model Type Help? Model Name Created
hostingCapacity Hosting Capacity Example 2025-03-03 01:29:29.546491
User Circuit
Circuit File Input L
AMI-Based Hosting Capacity
Meter Data Input File MOdel InpUtS fOl'
Apply AMI-Based Hosting Capacity - - Algorithm
— : Model-Free HC
On v input_mohcaData.csv sandia1l v

Load Power Factor (pu) DG Inverter Setting

1.0 Constant Power Factor

Standard Advanced
Inverter Default
Inputs

volt-VAR Setting
0.8,0.44,0.92,0.44,0.98,0,1.02,0,1.08,-0.44,1.

Overload Constraint

Transformer & Customer Calculation Inputs

[ aa) input_xfmr_cust_calculate.csv

Completed Transformer Labeling Info

e ) input_xfmr_cust_completed.csv

Number of Transformers in the System

DG Power Factor

XF Lookup Table

{12 input_xf_lookup.csv

Transformer & Customer Bus Coords Inputs

12 EEEEXEDE) input_bus_coords.csv

Model-Free Thermal
Hosting Capacity
Arguments

Model-Based Hosting Capacity

Apply Model-Based Hosting Capacity Maximum kW Tested
Off v 50000

Model-Based Inputs Downline Load

Algorithm
(needs circuit to run)

Downline Load Hosting Capacity

75 Years of Service Apply Downline Hosting Capacity Algorithm

NRECA .

America’s Electric Cooperatives
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Model-Free V-HC Results Display

AMI-Based Hosting Capacity Runtime ( H:M:S:MS )
00:00:03.563

AMI-Based Hosting Capacity Distribution

count

10 12

voltage_cap_kwW

Distribution of

MoHCA hosting
capacities.

Model-Free Full

Raw Data Table

75 Years of Service

€2 NRECA
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Runtime Tracking

AMI-Based Full Hosting Capacity Data Table

busname voltage_cap_kW
busload1 10.673748084712866
busload2 10.03274271595919
busload3 13.51303516196088
busload4 11.121959384844097
busload5 9.600178982441768
busloadé 12.062887194881814
busload7 13.216178166722733
busload8 14.909682412917368
bussec10_1 12.33987290842344

value

thermal_cap_kW

76.34830831104881
76.34830831104881
76.34830831104881
76.34830831104881
76.34830831104881
76.34830831104881
76.34830831104881
76.34830831104881

67.7761225967042

80

60

40-]

20+

0

AMI-Based Hosting Capacity By Bus

W voitage_cap_kW thermal_cap_kw M max_cap_allowed_kW

jenny t (jenthakkar@gmail.com) is signed in

T 108ssng |

¢ poassng |
g poassng |

€ poassng |

Z poessnq

T posssng

G goassng

£ goassnq

o ¥ £oassng |

g
g
3
o

Z gdassnq

1 goessnq

1 zoessnq

g To9ssnq

¥ Toessnq

£ Toessnq |

Z 1o9ssnq

T 0T28ssng
Z o1o8ssng |
T T198ssng |
Z Troessng |

Breakdown of MoHCA

voltage versus
thermal limits

max_cap_allowed_kW
10.673748084712866
10.03274271595919
13.51303516196088
11.121959384844097
9.600178982441768
12.062887194881814
13.216178166722733
14.909682412917368

12.33987290842344
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Hosting Map Generation and Export

Traditional/Model-Based Hosting Capacity Runtime ( H:M:S:MS )
00:00:10.958

Model-Based

Runtime

Traditional Hosting Capacity Map

@® Satellite
) QO Streets
O Topo
O Blank

@ Display full circuit
O Highlight search results

color_by_traditi
onal.csv

max_kw

103.25

Model-Based Circuit Map
Display. Color coded based
on hosting capacity

75 Years of Service

& NRECA
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80

2 60

Model-Based

Bar Graph

bus

bussec7_2
bussec7_3
bussec7_4
bussec8_1
bussec8_2
bussec8_3
bussec8_4
bussec9_1

bussec9_2

snq

snq
sng

Tpeo;

vpEO]
Speo]

max_kw

86.25
84.625
84.625
87.625
85.875
85.875
85.875
96.0

96.0

1 0198ssNq

Z o198s8Nq

1 T198sSNq

T T08ssng

PR EES

[ EEST

€ 198sSNq

Z T19888Nq
Z To8ssnq

reached_max

True
True
True
True
True
True
True
True

True

Traditional/Model-Based Hosting Capacity By Bus

T goassnq

1 goassng

Z edassnq
Z poassnq

£ posssnq

¥ poassnq

G posssng

T goassng

Z goassng

£ Goassng

¢ goassng

€ gosssng

o § £98ssnq

c
@

T poassnq

¥ ga8ssnq

Traditional/Model-Based Hosting Capacity Full Data Table

thermally_limited

True
True
True
True
True
True
True

True

Model-Based Full

Raw Data Table

1 goessnq

2 9o8ssnq

€ goessnq

¥ 92assnq

T L0@ssnq

Z 198ssnq

€ £09ssnq

¥ 208ssnq

1 8o8ssnq

Z goessnq

€ goassnq

¢ goassng

T 698ssnq

Z 6oassng

voltage_limited

False
False
False
False
False
False
False
False

False
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Downline Load Comparison Option

Traditional Hosting Capacity Map

Search objects...

Downline Load Hosting Capacity Runtime ( H:M:S:MS )
00:00:00.003

Add new objects

Attachments...

@® Satellite Download data...
QO Streets

QO Topo

O Blank _ “ Circuit Display with

Downline Load Hosting Capacity Full Data Table

Load = generation - storage - pvsystem

Color circuit...

bus kw p

o = i ' g Downline Load
busload2 1.2 2 DAY RGSU'tS
busload3 52

busload4 83

busload5 26

busloadé 84

busload7 18

busload8 5.7

buslv1 16.3

Downline Load

Runtime and Full
Raw Data Table

Leaflet | F

Raw Input and Output Files

75 Years of Service

ENRECA Ja -
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DNN HC - lowa State Results Display

AMI-Based Hosting Capacity By Bus

Model-free PINN-based algorithm

i M voltage_cap_kW
MOdeI InPUt 35 thermal_cap_kW
W max_cap_allowed_kW
Model Type Help? Model Name Created 30
hostingCapacity STABLE - Hosting Capacity lowa State 2024-03-13 17:56:56.195128 254
User Run Time ©
; -47- 1 = 209
admin 0:42:30 Model Creation g
. 15
AMI-Based Hosting Capacity with lowa State
; 0 0 10
Apply AMI-Based Hosting Capacity Meatar Dafa Input File Algorithm algonthm opt|on
On - isu_testinputData.csv iastate ~ 54
Model-Based or "Traditional" Hosting Capacity 0 o 5 b 5 o 5 5 o 5 5 o 5 5 o 5 b 5 5 o6 o o o o o
Apply Model-Based Hosting Capacity Circuit Maximum kW Tested FeategRBERESE §b§ BB R&88&88:cEESE
sname
oF - 50000 ‘
Delete Run Model Share Dupli(ate . .
AMI-Based Full Hosting Capacity Data Table
busname voltage_cap_kW thermal_cap_kW max_cap_allowed_kW
AMI-Based Hosting Capacity Distribution bus24 100 s 80
(O} - i bus33 85 8 8.0
bus45 2.0 8 8.0
407 bus44 19.499999999999996 8 8.0
354 bus18 8.0 8 8.0
-~ bus25 135 8 8.0
bus4s 7.0 7 7.0
254
o bus19 7.0 8 7.0
5
g8 2 bus42 8.999999999999998 7 7.0
15| bus9 7.0 7 .
. lowa State Algo:
10-]
Output by bus
5]
il B H B . . . visual and data

75 Years of ! 0 5 10 15 20 25

%/@ NRL L voltage_cap_kw

America’s Electric Cooperatives
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Transformer Pairing and Phase ID Background

« Accurate information regarding customer-to-
transformer groupings and customer phase

connections can improve the performance of the

Phase ldentification
MoHCA algorithms

« Data-driven algorithms for both tasks have been
integrated with OMF

Customer-to-Transformer Mapping

Is the customer

connected to

RECA A, B,or C?

| Pg. 61
America’s Electric Cooperatives
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OMF Integration - PhaselD Results

Confidence Scores Overview

Open Modeling Framework » phaseld ‘ Example” _ s . : Larger values indicate higher 4 An overview Of the
confidence scores for each
— ey e of the predictions, and the

Model Type Help? Model Name User I n Ut S
s EpsREaee P percentage of meters that
Created Run Time
o
2024-12-16 19:11:38.182486 £ Change
O 2
-
Simulation Specs g
_____________________________________________________________________________________ o
AMI Meter Data (.csv file) Clusters Window Size 6
-
sandia_test_data_2k_readings.c: 7 default g Predicted Phase Labels  Confidence Score  Final Cluster Label
2 71.58% 3
E» 3 T15% i
N 3 76.96% 1
10 3 77.71% 1
2 65.19% 2
2 65.19% 2
s 2 64.75% 2
Meter Phase Identification Overview 2 :g:;:f :
0 2 44.17% 3
04 0.6 0.8 10
Modified Silhouette Score (values < 0.2 should be considered low confidence) 2 45.42% 3
70 - 2 45.42% 3
1 customer_12 1 1 78.64% 0
60 customer_13 2 1 80.41% 0
customer_14 2 2 67.1% 3
customer_15 2 2 69.1% 3
customer_16 1 1 48.83% 0
< H 1 1 17 3 3 77.38% 1
- A f t h customer_
H conrtusion matrix, snowin cistomer 18 2 : 7.5% 3
52 . customer_19 2 2 67.54% 3
2 m t h I b I d d customer_20 2 2 67.54% 3
2 i 54%
any eters wnose labe I customer_21 2 2 67.92% 3
g customer_22 1 1 21.02% 0
not match the predicted true 1 i 0
customer_24 2 2 84.69% 2
3 h H th ﬁ:_ d H I customer_25 2 2 87.08% 2
p ase In e O Iagona customer_26 3 2 61.55% 3
, customer_27 2 2 59.42% 3
e ntrl es customer_28 2 2 62.43% 3
~ 2 ” customer_29 2 2 62.43% 3
Predicted Label customer_30 3 3 65.58% 1
customer_31 3 3 63.62% 1
customer_32 3 3 63.41% 1
2 2 72.06% 3
2 2 71.15% 3
3 3 69.65% 1

75 Years of Service PhaselD OUtpUtS with

% NREC A Original and Predicted | Pg. 62
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OMF Integration - Transformer Pairing Results

Customers Whose Transformer Labels/Groupings Have Changed

Customer to Transformer

customer ID Original Transformer Labels (with Errors) Predicted Transformer Labels
Pairing Analysis
customer_1 10 -2.0
customer_2 449.0 2.0
customer_31 59.0 -1.0
Model Input
customer_32 59.0 -1.0
Model Type Help? Model Name Created customer_33 1240 -1.0
transformerPairing STABLE - Default Trans Pairing Customer DI 2024-03-13 18:01:17.371135
User Run Time Improvement Stats
admin 0:00:55
‘ 5 g Num of incorrect transformers before Num of incorrect transformers after Total ‘mer imp p p g
Voltage AMI - Data Input File Real Power - AMI Data Input File Customer ID Data - AMI Data Input File
4 0 4 100.0
voltageData_AMI.csv realPowerData_AMI.csv [ da) CustomerlDs_AMI.csv
Choose Algorithm: Customer Distance Based ReS u ItS summa I’y r Pairing Algorithm Results
or Reactive Power Based
SEEa o = based on customer ID
Customer Latitude & Longitutde - AMI Data a nd COI’reCted ma pp| ng
Input File Reactive Power - AMI Data Input File
) CustomerlatlLon.csv reactivePowerData_AMI.csv

8

Total Transformers = 75

8

OMF Model inputs:

AMI Data

8

Number of Flagged Transformers
N
(-]

10

75 Years of Service

/’ﬁ_ﬂ/ NRECA ” ** Correlation Coefficient Threshold N | P; 63
®
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Task 5 - Develop Algorithms for
Assessing the Impact of Advanced
Inverter Operation Modes

& NRECA g
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Evaluating Advanced Inverter Functions

Proposed
Framework

Background / Methodology

« Advanced inverter functions like
Volt-VAR are required by |[EEE
1547 and becoming standardized
by many utilities/PUCs to: y

Mitigate voltage & thermal issues Iﬁ;.’:'i'le:ft
* Prevent excess reverse power flows
* Increase PV hosting capacity (HC)
* Improve the dispatchability of PV

(e.g., one year @
15-min resolution)

Advanced Inverter
-~ Control Settings

« Offset the need for grid upgrades ey \_,
= . = L Ve (V5,0) .
g Evaluations o \
’ 75 Years of Service = : Ve Vliase ppar L for DER Con imisous aperaton (Va,Q:)
€2 NRECA -
s Electric Cooperatives

1. J. A. Azzolini, M. J Reno, J. Yusuf, S. Talkington, and S. Grijalva, "Calculating PV Hosting Capacity in Low-Voltage Secondary Networks Using Only Smart Meter Data," in IEEE Innovative Smart Grid Technologies NA, 2023.



Prior Work to Future Goals

®* We built on prior work® to include the capability of evaluating
advanced inverter control functions

Active Power

* Constant power factor (PF) and autonomous Volt-VAR p{Generation) Volt-WATT

®* Framework can be applied to any function that manipulates PV real
and reactive power outputs

* Applicable to any inverter-based DER, such as energy storage or
electric vehicles b,

(Py,V2)

_____________________

‘ I Vgltage
Vi V, Wy

®* The goal of out methods is to evaluate the effects on PV HC, not
determining optimal settings

Q('"je“i°"ﬂ°"e"e"‘"e") Vi: Voltage upper limit for DER
continuous operation

>
>

- Volt-VAR

ited

Dead Band
«—>>

Veer  (V3,Qa) . IVoI}age(p.u.)
Vs Vy -

Minimum Q
capability

VoW (V2,Q2)

75 Years of Service

& NRECA
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V,.: Voltage Lower Limit for DER Continuous operation (V QA)
Vu: Voltage Upper Limit for DER Continu ous operation 4

Reactive Power (% of Stated Capability)
o

Absorption / under-excited | Injection / over-exc

<&
<



Evaluating Advanced Inverter Functions

Methodology

The main steps are to: Loag | data:
L] [l [l P'Q'V
1. Load in the yearlong time-series [ start B b 0.01
data from a smart meter and NV, NPF
‘ ; 0.005
calculate additional variables , _
Extract op and oq Coefficients g_
] Remove: > 0
2. Filter the data and apply the * Small NP values <
i N0 e Small NPF values -0.005
surface fit to extract the coefficients  Large NV outliers
of voltage changes due to real and -0.01
I Apply surface fit I

reactive power changes, op and 0q using eq. (1)

3. Use those coefficients for DER Apply op and aq coefficients T 4
i - to calculate voltage impacts AQ (kVAR) - P (kW
ImpaCt _analyses’_ such as \_/Oltage of any P or Q output from AP (kW)
constrained hosting capacity the PV system

(VCHC) Blue dots are one year of
AV = (0pXAP) + (09 xAQ) (D filtered smart meter data

75 Years of Service

€2 NRECA .
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Constant Power Factor Mode Results

* The maximum PV kW injections (not - Customer#25 ,
causing 1.05 Vpu) were calculated using oo || =090 inductive (mode-fee) ]
both methods ) i ﬁ
* As anticipated, the capacitive PF resulted sl
in the lowest values of kW, gso ,, 4
* More extrapolation led to more errors, but 520; :
more accurate at times when PV is most
limited 1oy \\ . WwNLVI
« The data-driven method was able to il omiosmo  Omvumw  omrim  owioom
determine the HC within 1 kW of the PV PE Modew_%ased Data|_-||§;r e Error
model-based results for all cases
PF = 0.9 capacitive 3.24 kW 3.18 kW -0.06 kW
PF = 1.0 unity 4.75 kW 4.58 kW -0.17 kW
PF = 0.9 inductive 9.04 kW 8.16 kW -0.88 kW

75 Years of Service

€2 NRECA o

» America’s Electric Cooperatives



Model-Free HC Leads to Large Performance Improvements

Substation
OOOOOO

* Forall 1379 customer locations, the average VCHC results were
[4.93, 6.26, 8.89] kW, which correspond to inverter ratings of [5.19,
6.26, 9.36] kVA for the [+0.95, 1.00, -0.95] PFs

« Compared to the model-based results, the mean absolute errors
(MAEs) were [0.25, 0.27, 1.62] kW

 The proposed framework took <6 minutes to calculate all results,
whereas the model-based results required days of S|mulat|on time
for each PF case using the same computer a5 | | |

+
10_ +

+
% £
;
:': -
I ¢
Y
75 Years of Serwce I ] |

%ﬁ NRECA *0.95 1.00 g 0 15 2 2 w3 | Pg. 69
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1
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T

Data-Driven VCHC (kW)
> S
<

VCHC Error (kW)
o

[3,]

o
o
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Similar Results for Volt-VAR Mode Inverters

« The average VCHC results were [7.01, 7.80] kW, which 0.44 L S S —
correspond to inverter ratings of [7.06, 8.00] kVA, with Cat B Settings
MAEs of [0.56, 0.72] kW S |

 The proposed framework took <4 minutes to calculate all Bool e B
results, whereas the model-based results required days of o
simulation time for each Volt-VAR case using the same o2sf & T
computer

-0.44 .
0 S F P ® S HF & ®
50 | Q Q° Q Q" N N NS ON
V (pu)
o 15
40 - + T

-
o
T

[3,}
+

Data-Driven VCHC (kW)
w
o

O Volt-VAR (Cat. B) | -
O Volt-VAR (Cat. A) |
Equality +

-
o
T

N
o
<
%
O
=\
<>
VCHC Error (kW)
o
—++M{H—b~++ +

75 Year@ofeervroe—r!

’ 0 2I0 310 40 50 C I A Cat.B
"ﬁz@ NRECA Model-based VCHC (kW) * Volt-VAR Settingsat. | Pg. 70
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Advanced Inverters Greatly Increased Hosting Capacity

« Compared to unity PF, grid-support functions can significantly increase HC

» Under default settings, only minimal impact to annual energy vyields (i.e., no
significant curtailment of real power)

+ Ultimately, the user will be able to toggle these functions to see the impacts on
HC and PV energy yields

— 40% 33%

S . 30% M const-pf M const-var B watt-var E volt-var
=30% 26%
o 0.0300%
o 20% 15% £ 0.0250% :
U —
£ 10% . £ 0.0200% o
>
2 0% E £ 0.0150%
£ =
const-pf const-var watt-var  volt-var £ 0.0100% =
3 0.0050%
— e
’ 75 Years of Service 0.0000%
= HC increases when applying different control modes . . .
’ﬁa 1\ PPlyIng PV inverter generation curtailment (compared to the 71
® America’s Electric Cooperatives

total PV generation) under different control modes



Task 6 - Engage Project
Stakeholders, Result Dissemination,
and Outreach

& NRECA o 72
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Industry Advisory Board Formed

* Meetings ran 2022 through 2024
« Approx. 35 individuals make up the advisory
board, representing electric utility staff, research

organizations, and vendors

winnipeg
°
Vancouver

Qutbzccny

AN

9 M:mupoo lis Moetreal

Son L{ﬁc Cay 9 & :
oewver> United States
qu;mﬂlo .

oSan Jose 9
N as
Abute«quo s -

San Franciscoo

Los Angeles
5
San Diego Phoanix O.Lm
'D:m

Ciudad Jubrez

0
San Amonio

Mon;'«uy
Mexico
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roQ el L
Indisnapolis Cincinnati Columbus 9
St Louis 3

oL Mo w

Houston
°

Toronto
)

9

Chicago
&

» New York
Philadelphia
°

o
Charlotte,

Al‘gﬂl ¢ 9

Jacksonville
o

Name

Organization

Jared Weeks

United Power Colorado

Brian Lydic

Interstate Renewable Energy
Council (IREC), Albany, NY

Shibani Ghosh

NREL

Andrea Pinceti

Virginia Dominion Energy, Inc.

Jon Hawkins

PNM Resources, Albuguerque, NM

Jeremiah Miller

Solar Energy Industries Association,
Washington, DC

Jim Cross Yampa Valley Electric Association

Jeffrey Wadsworth Poudre Valley REA

Jim Glass EPB Chattanooga

Francis Therrien Eaton, CYME International T&D

Joshua Noel Poudre Valley REA

Jakob Lowman Southside Electric Cooperative

Chuck Gill Owen Electric Coop, Kentucky
Southwest Arkansas Rural Electric

Dion Cooper Administration

Philip Lim Middle Tennessee Electric Coop

Kelsey Gustainis

Tri-County Electric Coop Texas

Eugene Hamrick

Rappahannock Electric Coop

Brian Swart

Horry Electric Coop

Shaun Vester

Coles-Moultrie Electric Coop

Anthony J. Capobianco

Berkeley Electric Cooperative

Brett Kinlaw

Lumbee River Electric Coop

Lacy Frazier

Northeast Oklahoma Electric Coop

Quentin Rogers

Powder River Energy Corporation
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Stakeholders

® Who are the relevant stakeholders in your area?

Relevant stakeholders include utilities, co-ops, software vendors, and solar
developers

We have established (and met with) an industry advisory board (IAB)

« Members include IREC, EPRI, SEIA, CYME, NREL, PNM, EPB Chattanooga, and 18 co-
ops (e.g., Poudre Valley REA, Owen Electric, Lumbee River, Rappahannock, ...)

The work has also been presented through conferences (IEEE T&D) and workshops
(GridTECH Connect)

What reactions have you heard from stakeholders about outputs or findings?

* We continue to hear that conducting conventional hosting capacity analyses are challenging

given the status of utility models and the pace of interconnection requests leading to long
queues.

Utilities are interested in the ability to run algorithms locally due to data privacy concerns
* Lots of interest in leveraging these algorithms
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United Power Testing

United Power Test System

8 different feeders of varying
sizes with different types and
numbers of customers

Feeders 6, 7, and 9 are much
smaller than other feeders

Feeder 4 smaller than 2, 3, 5, and
3

Feeder 9 has no secondary

We focused our modeling and
analysis on Feeder 3

75 Years of Service

source_pu

source_kv

init_kw

init_kvar
feeder_max_length_km
n_bus

n_lines

n_primary_lines
length_primary_lines_km
n_secondary_lines
length_secondary_lines_km
n_cust

n_loads

n_primary_loads

n_secondary_loads

n_capacitors
n_fuses
n_generators
n_pv
n_transformers
n_reactors
n_regulators

n_storages

02

1.04167
1247077
6592.936391
1702.22599
6.382165
2965

2538

742
37.855196
1796
42.728553

———————
03
1.04167
1247077
6570.037629
1247.663198
5.863739
3222
2856
607
42.658003
2249
54.513597

04

1.04167
12.47077
1829.747615
647.208794
5.265643

11.857132
442
9.961395
0

555

1

05

1.04167
12.47077
6545.92479
1761.771997
9.584368

44330104

06 07

1.04167 1.04167

12.47077 12.47077
219.343195 229.916797
74.050801 70.674799
0.904401 5.122013
129

95

76

19
0431292
0

19

0

19

0.156972

08

1.04167
12.47077
7467.170408
1900.118403
8.317869
4554

4000

947
65.748788
3053
76.165209

0

09

1.04167
12.47077
2868.47998
380.160004
1.045164
12

9

9

1.045164

0

€2 NRECA

America’s Electric Cooperatives




United Power Testing

Most feeders had no .
violations

Under-voltages on feeder 5

* Each feeder model was reduced 2-14 times by merging neighboring

lines to minimize the number of buses while maintaining the topology
Cuts down on computational time and are mathematically equivalent

Over-loaded transformers in
feeders 5 and 8
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United Power Testing

Feeder 3

Incorporated load locations from
new models, but many line codes
and line ratings did not convert (just
Zeros)

Used secondary star approach to
reduce excess lines and add line
length diversity

Loads modified to connect across
240V LV terminals of split-phase
transformer (instead of splitting each
load in half on each leg)
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United Power Testing

Feeder 3 -
Feeder 3 : ::::::aeu?:ansformer

304 single-phase service transformers o o °_Loads
277 with downstream loads that had AMI data £ -4 238 -..-.'_"-.' f.-.-. TR \

e T
Low-voltage networks from United Power are \ﬂ gy x,
included in the analysis 3

1,563 residential customers with AMI data

Each customer has smart meter data
P, Q, and V measurements @ 15-min resolution

Most customers have a full year of
measurements, but some are missing parts of
the year

Could be due to meter outages, new customers
being added, inactive customers that were
removed
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Validation Methodology

Feeder Model in
Native Format

Raw AM| Dataset HCA conducted on Feeder 3 for algorithm validation

eter Modifications made to align the model-based and MoHCA
P, Q measurements inputs, that way we can quantify algorithm errors

(>=1yr @<=15 min. res.)
Use actual P and Q from smart meters to model the loads,
then run yearlong quasi-static time-series (QSTS) simulation

Clean data, to calculate the synthetic voltages
Convert Create nprofiles i _
to OpenDSS from Pand Q data This means that the HCA results may not be representative

of field results

Model w/ AMI

profiles for all loads
Run Yearlong QSTS

Model w/ AMI
profiles for all loads

Ugdgtgr,:?{u: Missing M Input Data to
Synthetic V. Data L1 ML Aigorithms
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HCA Methodology, Model-based

Run yearlong quasi-static time-

. ! . . Distribution Distribution
series (QSTS) simulation without Lines Transformers
PV . Power Flow Simulations:
Voltage L . - Add PV, increase size until
Record customer voltages and Regulators Distribution Network violations occur
transformer loading time-series Model -Move to next location Map Color Indicates HC
: Capacitors ubstation % Substation P r——" = -

Add PV to any customer premise P o
At t=0: Customer

Iteratively increase PV size, solving Energy Usage

the power flow each time Customer Phase

Record max PV size w/o any Connections

voltage or thermal violations

Load Models

Move to next time point (e.g.,
t=t+15 minutes) if there is one Distributed Secondary

Repeat steps 3a and 3b Energy Resources NS EE) G 0o

Repeat steps 2 through 4 for all
customer premises
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HCA Results— MoHCA vs Model-based

Unity PF PV
Voltage-Constrained HC (VCHC) ' _ ' | '
¥ Substation
1232/1563 locations (78.82%) were accurate
within 10% of model-based results ; ] 30
Map on the right shows the difference between
MoHCA and model-based HCA results 20
Unity PF PV - MAE: 2.00 kW (8.5%), Max: 43.70 kW (140.7%)
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HCA Results— MoHCA vs Model-based

TCHC if Service Transformer Sizes are known:

Assuming customer-transformer groupings are accurate, just take the difference between total existing load on the
transformer (i.e., sum smart meter data) and max capacity

» America’s Electric Cooperatives

Unity PF PV
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Impact and Innovation

« High Impact - Leveraging >$1 billion U.S. investment in smart meters provides a very high
value/cost tradeoff for multiple stakeholders (utility, solar developer, customers, etc.)

« Since the proposed approach directly incorporates data analytics and does not require any power
flow analyses to be performed, it has a variety of advantages over existing methods:
 Reduced complexity. The proposed approach does not require any detailed (often error-prone) grid
models and can be independently applied to any location with a smart meter.
 Improved speed and scalability. Taking a data-driven approach to calculate solar HC avoids

thousands of power flow solutions, dramatically reducing computation times. Faster speed results in
hosting capacity maps updating more often with less stale data for stakeholders

- Added functionality. Machine learning and data analytics techniques can offer additional insights
into the locational impacts and benefits of advanced PV inverters.

- Enhanced accuracy. Using field data provides better visibility into potential PV systems and
timeseries hosting capacity analysis provides insight into operations during the entire year instead of

just extreme points

* Provide actionable intelligence for developers to size and site PV
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® Next Steps

* Improving the equipment constraint modeling for cases where no information is available about
transformer connections

® What do you wish you could do with more funding?
* Build on this work to facilitate interconnection screening and queue management
* We get some variation of this question a lot: “Can this tool be used for interconnections?”
* Intheory, we can use info from interconnection requests to model the DER output, and leverage the
PINN-based methods to determine the impact of that system on neighboring customer locations
® Biggest Challenge and Achievement of the project so far?

®* Biggest challenge was receiving utility models/datasets, then converting/cleaning them to be able to
test our algorithms on them

®* Biggest achievement has been meeting all the accuracy metrics and project milestone on schedule
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Call for Data, Hosting Capacity Analysis

Algorithms are ready, and we'd like to calculate hosting capacity for your systems!
We would need, for one circuit on your system:

Historical AMI data, ideally about a year’s worth but more is fine, including the meter

IDs, times of the readings (hourly or 15 minute), voltage values, kW values and (if you
have them) kVAR values.

The Windmil model for that circuit (so we can benchmark the results against more
traditional methods). If you can send the OpenDSS version that would be ideal (File >

Export... and then choose the OpenDSS option), but you can also send us the native
« .wm + eqdb files and we can extract the OpenDSS model.

Sandia and NRECA have NDAs we can execute to keep your data secure.
Interested? Please email david.pinney@nreca.coop.
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Sandia National Laboratory
Dr. Matthew Reno, principal investigator, mjreno@sandia.gov
Dr. Joseph Azzolini, research lead, jazzoli@sandia.gov

« Dr. Jubair Yusuf, researcher, jyusuf@sandia.gov

NRECA
David Pinney, project coordinator, david.pinney@nreca.coop
Jennifer Thakkar, software engineer, jennifer-thakkar@nreca.coop
* lowa State
* Professor Zhaoyu Wang, wzy@iastate.edu
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