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Background and Problem Statement
• Background 

• Hosting capacity analysis (HCA) determines the maximum amount of PV that can be installed at 
various locations on the grid without adverse effects on the distribution network and without requiring 
network upgrades. The outputs are often published in hosting capacity (HC) maps: a visual 
representation of the hosting capacity across the system.

• Problem 1: rapidly growing DER interconnection requests 
• Some Co-ops are seeing 1-2 solar interconnection requests per day.
• These Solar photovoltaic (PV) system costs are now dominated by non-hardware or “soft” costs - 

e.g. customer acquisition, permitting, and interconnection costs.
• Heavy work-load and time-consuming for consumers & engineering to process interconnections

• Problem 1: increasing interest & mandates around generation of hosting capacity maps
• Public-facing hosting capacity (HC) maps have been key factors to reducing solar soft costs
• They enable streamlined interconnection processes and direct access to siting and permitting 

data for stakeholders and decision-makers
• Incoming mandates for utilities to create them from state regulators
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The Problem With Traditional Hosting Capacity

• Conventional model-based HCA methods are time-consuming and 
computationally intensive, making them impractical for many 
utilities and coops

• Require iterative simulations on detailed distribution system 
models = long computation times

• “The time needed for distribution analysis models doing any type 
of iterative analysis takes too long to run.” - California Public 
Utility Commission

• Accuracy of the HC solution is dependent upon the accuracy of 
the model, which are prone to errors

• Lack the necessary resolution and functionality to evaluate 
advanced inverter capabilities or flexible PV interconnections
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Model–Based HC Definition
Conventional model-based HCA:
• Model – Based HCA accuracy depends on accuracy of distribution network model
• Network model consists of various components that all must be modeled accurately

• Component models each have a variety of parameters and assumptions
• Models rely on human input and are prone to errors (e.g., network upgrades don’t make it into the model 

or customers are connected to the wrong phases)
• Secondary networks models are often unavailable or oversimplified
• Modern distribution networks are becoming increasingly complex, making it more difficult to maintain 

model fidelity
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Model-Based Hosting Capacity Error Potential

Conventional model-based HCA:
• HCA accuracy is highly sensitive to modeling errors [1]

• Errors can have local or feeder-wide impacts

• Worst-case “snapshot” style analyses can significantly underestimate PV hosting capacity

Percent Error in Hosting Capacity

Impact of poor distribution models on hosting 
capacity estimates for each residential customer 

(generally 10-30 kW hosting capacity)
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Our Solution: AMI-Based Hosting Capacity
Can we extract locational HC limitations from smart meter data without a network model?
• Yes: scalable, data-driven algorithms based on statistical analytics and physics-informed machine learning 

techniques can calculate the voltage- and thermal-constrained HC at smart meter locations
• Needs only P,Q,V readings from each input smart meter (can work at lower fidelity without Q)
• 1 year of data required, 15-minute intervals are ideal but 1-hour intervals will work
• Software developed to calculate capacity and generate hosting capacity maps
How does this help the issues with model-based methods?
• No power-flow circuit model required
• Not impacted by modeling assumptions/errors
• No simulations required => faster and more scalable than model-based methods

• Reduced computational burden means HC maps updated more frequently
• More practical to implement
• Any changes to the distribution network are inherently captured in the smart meter data

• Historical AMI provides time-series hosting capacity analysis of operations during the entire year instead 
of just extreme points
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AMI-Based Hosting Capacity Benefits
• Smart meter data is passed directly into the model-free HCA tool

• Entirely Data-driven algorithms are applied to calculate locational solar HC subject to voltage and thermal 
constraints, HC map can then be generated for that location

• Any changes to the distribution network are inherently captured in the smart meter data
• I.e., the approach is robust to phase changes, network upgrades, etc. without user intervention
• Captures low-voltage secondary network characteristics, which are often missing or over-simplified in utility models

• No simulations are required = much faster than model-based methods
• Reduced computational burden means HC maps can be updated more frequently to keep pace with increasing 

levels of interconnection requests

• Can accommodate both static and timeseries hosting capacity analysis 
• Static: limited by any violation at any time during the year
• Timeseries: relaxes constraints to allow for some violations to occur (aligned with standards that allow temporary 

violations)

• Useful for streamlining behind-the-meter (BTM) interconnection requests
• Model-free HCA results can be used as a screening method (as opposed to existing “rules of thumb”)
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Project Software Available on OMF.coop

Data-Driven Algorithms

Test Accuracy and Robustness

OMF Application

• Algorithms developed for the project have been 
incorporated in the web-based modeling platform 
Open Modeling Framework (OMF) at omf.coop.

• OMF.coop allows utility access to advanced 
algorithms and modeling tools via easy graphical 
interface

• Free and open source
• Can run algorithm on-demand
• Input via file upload

• Visualization, data conversion, and model 
management tools in place.

• 250+ utilities and vendors throughout the US already 
active on the platform
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Video Demonstration and Documentation of Software
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Video Demonstration [1]

[1] https://drive.google.com/file/d/17_9g5eC0i6pHecsnSuxTYi6S7NxTVvln/ 
[2] https://github.com/dpinney/omf/wiki/Models-~-hostingCapacity

Documentation [2]

https://drive.google.com/file/d/17_9g5eC0i6pHecsnSuxTYi6S7NxTVvln/
https://github.com/dpinney/omf/wiki/Models-~-hostingCapacity


Core MOHCA Algorithms also Available in mohca_cl

• Simple python package with command 
line interface implementing core 
algorithms

• Hosted on GitHub at 
https://github.com/dpinney/mohca_cl 

• Allows easy integration into 
commercial and existing tools.

• Project team open to moving 
additional functionality into this 
package (e.g. support for circuit 
models).
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The MOHCA Project, Federally-Funded Research

Objectives Achieved
• Develop scalable algorithms for 

estimating the voltage- and thermal-
constrained HC at smart meter locations

• Algorithms for identifying optimal inverter 
settings

• Evaluating hosting capacity as a time-
series, instead of considering a handful 
of worst-case scenarios that may 
underestimate HC
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Model-Based Model-Free

3-Year Project funded by DOE SETO “Smart Meter Data: A Gateway for Reducing Solar Soft 
Costs with Model-Free Hosting Capacity Maps”

aka, Model-free Hosting Capacity Analysis (MoHCA)
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Timeline of MOHCA Project Tasks

Year 1 Year 2 Year 3+

2022

• Form Industry Advisory Board
• Identify 5 test circuits
• Initial development of voltage-

constrained and thermal-
constrained algorithms

• Initial integration into the OMF 
and mohca_cl to allow utilizes to 
run algorithms with their own 
data

• Perform hosting capacity 
analysis for co-ops on 
circuits

• Continuous updates and 
integration of hosting 
capacity algorithms as 
testing goes on

• Comparison of model-
free and model-based

• Upgrade front-end 
integration for 
comparison analysis

• Further testing for 
refinements and 
enhancements

• Get stable version of model-
free hosting capacity

• Develop algorithms for 
assessing impact of 
advanced inverter functions

• Upgrade frontend for 
advanced inverter operations

• Introduce continuous 
analysis of hosting capacity 
for coops

2023 2024

Task 1-4 Task 2-5 Task 4-6
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Task 2 - Develop Algorithms for 
Voltage-Constrained Hosting 

Capacity Analysis
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Model w/ AMI 
profiles for all loads

Conventional Model-based HCA Method I
Main Objective: Calculate baseline locational* HC results using a conventional, model-based approach

Convert
to OpenDSS

Clean data, 
Create n profiles 

from P and Q data

Feeder Model in
Native Format

Model-based Locational HCA:
1. Run yearlong quasi-static time-series (QSTS) simulation without PV

a) Record customer voltages and transformer loading time-series
2. Add PVto any customer premise
3. At t=0:

a. Iteratively increase PV size, solving the power flow each time
b. Record max PV size w/o any voltage or thermal violations

4. Move to next time point (e.g., t=t+15minutes) if there is one
a) Repeat steps 3a and 3b

5. Repeat steps2through 4for all customer premises

*Determines how much PV can be installed at any customer premise
before voltage or thermal issues occur, providing actionable data to
streamline interconnection requests. If the system changes (e.g., due to
equipment upgrades or PV installations), the locational HCA must be re-
run.

Raw AMI Dataset

Meter n:
P, Q measurements
(>=1 yr @<=15 min. res.)
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The time-series results can then be post-
processed in various ways (see table) to 
determine a final HC value for each 
customer premise

Scenario
Only 
Daylight 
PV*

Vlim1

(Vpu)

Hrs
Outside
Vlim1

Vlim2

(Vpu)

Hrs
Outside
Vlim2

Tlim1

(%kVA)

Hrs
Outside
Tlim1

Tlim2

(%kVA)

Hrs
Outside
Tlim1

1 False 1.05 0 1.058 0 120 0 150 0

2 True 1.05 0 1.058 0 120 0 150 0

3 True 1.05 87.6 1.058 0 120 87.6 150 0

* True = only consider time between 09:00 – 15:00

Meter n

ExampleHCAConstraints

Conventional Model-based H-CA Method 2

Customer N

Model-based Locational H-CA Objective:
1. Run yearlong quasi-static time-series (QSTS) simulation without PV

a) Record customer voltages and transformer loading time-series
2. Add PVto any customer premise
3. At t=0:

a. Iteratively increase PV size, solving the power flow each time
b. Record max PV size w/o any voltage or thermal violations

4. Move to next time point (e.g., t=t+15minutes) if there is one
a) Repeat steps 3a and 3b

5. Repeat steps2through 4for all customer premises
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Model-Free Regression Algorithm Overview
Main Objective: Develop algorithms that derive a customer’s maximum PV interconnection size, 
according to voltage and thermal constraints, using only that customer’s smart meter data. 

Assumptions:
• No system model or topology information is available
• Purely data-driven methods to determine transformer groupings and secondary system topology can be leveraged

• Some now included in the OMF already

Limitations:
• Customer’s AMI data only provides information on the potential local impacts of the interconnection. Things like substation 

transformer rating and transmission hosting capacity constraints have to be brought in separately.
• Other impacts, such as protection, are not considered

Algorithm Inputs:
• Customer smart meter measurements

• (P, Q, V) starting with 1-year at 15-min resolution
• Meter location info

• Utility thresholds
• Voltage limit (e.g., ANSI)
• Threshold limits (e.g., overload capability)

Algorithm Outputs:
• Voltage-constrained HC (V-HC) 

• kW of PV that can be installed before that customer 
will experience voltages outside of limits

• Thermal-constrained HC (T-HC) 
• kW of PV that can be installed before the service 

transformer will be overloaded
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Input and Output Schema

Regression Model-Free Algorithm
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busname datetime v_reading kw_reading kvar_readin
g

50061 2019-12-
31T20:00Z

249.3867 0.6474 1.282715

50061 2019-12-
31T20:15Z

248.9600 0.6696 0.292835

50061 2019-12-
31T20:30Z

249.1022 0.6588 1.395352

busname kw_hostable

50061 2019-12-
31T20:00Z

50061 2019-12-
31T20:15Z

50061 2019-12-
31T20:30Z

Input Schema Output Schema



Model-Free Regression VHC Introduction

20

Regression analysis of historical 
load power and voltage 
measurements, gives you dV/dP, 
dV/Dq
• I.e., sensitivity of the customer’s 

voltage to changes in power
• Use that sensitivity to determine the 

max allowable PV injection before a 
voltage violation occurs for that 
customer (i.e., V-HC)
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V-HC Calculation

[2]  J. Azzolini, M. Reno, J. Yusuf, S. Talkington, and S. Grijalva, “Calculating PV Hosting Capacity in Low-Voltage Secondary 
Networks Using Only Smart Meter Data,” IEEE Innovative Smart Grid Technologies Conference (ISGT), 2023.
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Regression Results Against 2 Datasets

21

• Regression-based V-HC algorithm 
developed and tested on 2 different 
smart meter datasets

• The model-free algorithm was within 
0.3 kW of the model-based HC 
results, on average

• Within 1 kW at 96.6% and 95.8% of 
customer locations for the two datasets

• Higher errors were observed for some 
locations

• Confidence metrics can be used to flag 
locations with poor fits

• Consistent performance for two 
different datasets 

HC Metric Dataset 1 Dataset 2
MAEHC 0.26 kW 0.29 kW
Max. Error 2.84 kW 7.65 kW
Locations <1kW Error 96.6% 95.8%

[2]  J. Azzolini, M. Reno, J. Yusuf, S. Talkington, and S. Grijalva, “Calculating PV Hosting Capacity in Low-Voltage Secondary Networks Using Only Smart Meter Data,” 
IEEE Innovative Smart Grid Technologies Conference (ISGT), 2023.
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Regression Results – Measurement Noise

22

• Both the model-based and model-free approaches 
were highly sensitive to measurement noise

• Errors introduced by the model-free method (∆HC) 
were consistent even as noise increased
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[2]  J. Azzolini, M. Reno, J. Yusuf, S. Talkington, and S. Grijalva, “Calculating PV Hosting Capacity in Low-Voltage Secondary Networks Using Only Smart Meter Data,” 
IEEE Innovative Smart Grid Technologies Conference (ISGT), 2023.
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Model-Free DNN V-HC Algorithm Introduction

| Pg. 23P,Q,V, IrradianceIrradiance

Machine Learning 
Algorithm

P

Q

VTr
ai

ni
ng

D
at

a ĤC (kW)

HC (kW)
ML Training

• Data-driven models learn how changes in power consumption impact the voltage
• Correlations between historical P, Q, V data and hosting capacity

• Use that model to predict the max PV size that customer can install without voltage violations
• Utilizing Convolutional Neural Network + possible physical-informed elements
• Inputs – an “image” per customer

• 3x35040 (p, q, v by time ) or some other method to compress time into more meaningful 
physics-based statistics

• For timeseries HC – provide irradiance timeseries
• Training data – baseline hosting capacity for 10, 000 customer training samples
• Repeat prediction for all customer locations on a feeder



DNN V-HC Objective and Steps

[3] J. Yusuf, J. Azzolini, and M. Reno, “Predicting Voltage Changes of Low-Voltage Secondary Networks Using Deep Neural Networks,” IEEE Power and Energy 
Conference at Illinois (PECI), 2023. Under Review.

Model-Free DNN V-HC Algorithm Objective

• Train a deep neural network (DNN) to predict ∆V given ∆P and ∆Q

• DNN can be trained for
• 1) a group of customers served by the same transformer

• 2) a single customer

• After training, the DNN can predict voltage impacts from PV injections, which can then be used to
calculate V-HC

dP, dQ and dV for the 
customers

Data
Preprocessing

Training and
Validation Split

Step
1

Step
2

Step
3

dP, dQ (model 
input)

dV (model 
output)

Hyperparameter 
Tuning

Parameter 
Selection

Predicting dV for the 
test data

Post Processing
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DNN V-HC Algorithm Architecture

tanh

ReLU

ReLU

ReLU

DNN Architecture:

Activation functions

Using DNN to predict Voltages:
• Model trained for 6 customers connected to the same

transformer
• Voltages were predicted for constant 5 kW PV injection 

at one customer location (customer 97)
• Predicted voltages compared to model-based results*The number of neurons in dense layers 

corresponds to the number of customers 
sharing a transformer (6 in this case)

[3] J. Yusuf, J. Azzolini, and M. Reno, “Predicting Voltage Changes of Low-Voltage Secondary Networks Using Deep Neural Networks,” IEEE Power and Energy 
Conference at Illinois (PECI), 2023. Under Review.
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DNN V-HC Algorithm Setup
Algorithm 1
• Train a DNN for each group of customers sharing a

transformer

Algorithm 2
• Train a DNN for each customer
Testing
• Use each DNN to predict voltage changes associated with a

variety of PV injections

Test Case Alg. 1 Alg. 2
A. Small
(constant source voltage) 2.39% 6.89%

B. Small
(varying source voltage + LTC) 11.21% 12.04%

C. Large
(varying source voltage) 17.22% 17.62%

Large

Small

Test Case Alg. 1 Alg. 2
A. Small
(constant source voltage) 1.78% 4.33%

B. Small
(varying source voltage + LTC) 5.29% 8.70%

C. Large
(varying source voltage) 13.50% 19.14%

Mean Abs. Percent Errors (MAPE) 
of Voltage Predictions

Interpolation Errors

Extrapolation Errors

[3] J. Yusuf, J. Azzolini, and M. Reno, “Predicting Voltage Changes of Low-Voltage Secondary Networks Using Deep Neural Networks,” IEEE Power and Energy 
Conference at Illinois (PECI), 2023. Under Review.
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PINN Algorithm Overview
Physics-Inspired Neural Network (PINN) for voltage-constrained HC [2]

[2]    L. Liu, N. Shi, D. Wang, Z. Ma, Z. Wang, M. J. Reno, J. A. Azzolini,  “Voltage Calculations in Secondary Distribution Networks via Physics-Inspired Neural Network Using Smart Meter Data,” under review.

Structure of Physics-inspired 
Neural Network Customized training algorithm of 

the designed model

Error Metrics MAE(kW) Max MAE(kW)
Locations(%)
<1 kW Error

Nodes Avg 0.89 1.57 87.72%

Customer node voltage calculation results 

Maximum accessible PV Capacity 
estimation results (taking AMU model as 

an example)

Model Training Results 
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Model-free Algorithms Accuracy
• More data = better accuracy
• Regression-based2 and PINN-based3 methods integrated in OMF

[2]   J. A. Azzolini, M. J. Reno, J. Yusuf, 
S. Talkington, S. Grijalva, “Calculating 
PV Hosting Capacity in Low-Voltage 
Secondary Networks using Only 
Smart Meter Data” in IEEE Innovative 
Smart Grid Technologies (ISGT-NA), 
Washington, DC, 2023.
[3]    L. Liu, N. Shi, D. Wang, Z. Ma, Z. 
Wang, M. J. Reno, J. A. Azzolini,  
“Voltage Calculations in Secondary 
Distribution Networks via Physics-
Inspired Neural Network Using 
Smart Meter Data,” IEEE Transactions 
on Smart Grid, 2024.
[4]   J. Yusuf, J. A. Azzolini, M. J. Reno,  
“Predicting Voltage Changes in Low-
Voltage Secondary Networks using 
Deep Neural Networks” in IEEE 
Power and Energy Conference at 
Illinois (PECI), Champaign, IL, 2023
[5]   J. Yusuf, J. A. Azzolini, M. J. Reno, 
“PV Hosting Capacity Estimation in 
Low-Voltage Secondary Networks 
Using Statistical Properties of AMI 
Data,” IEEE Innovative Smart Grid 
Technologies Latin America (ISGT-LA), 
2023. 

Algorithms Required Inputs MAE 
(kW)

Max Error
(kW)

% of Locations
>1kW Error

Constant Sensitivity5 Max V 1.49 20.74 50.88%

Statistics-based AdaBoost – V5 Min, Max, Std of
(V) 1.25 15.57 22.50%

Statistics-based AdaBoost – PV5 Min, Max, Std of
(P, V) 0.98 14.80 17.74%

Statistics-based AdaBoost – PQV5 Min, Max, Std of
(P, Q, V) 0.95 14.35 17.83%

Model-Free Approach - DNN-based4 Time-series
(P, Q, V) 0.78 2.49 30.40%

Regression-based2 Time-series
(P, Q, V) 0.26 2.84 3.40%

PINN-based3 Time-series
(P, Q, V) 0.89 1.57 12.28%
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Input: Statistical Properties 
(min, max, std, mean) of 

Available AMI Data
 

Output: Hosting Capacity

Model Free Additional Enhancements
Leveraging Statistical Properties of AMI data for model-free HC calculation [1]

• Challenges:
• Data available for limited timestamps
• Unavailability of all P, Q and V measurements
• Unavailability of AMI devices for all the locations

• Solution:
• A simple, easy-to-implement yet reliable method is needed that can provide a ballpark PV HC 

estimation for any customer and overcome these limitations.

[1]   J. Yusuf, J. A. Azzolini, M. J. Reno, “PV Hosting Capacity Estimation in Low-Voltage Secondary Networks Using Statistical Properties of AMI Data,” IEEE Innovative Smart Grid Technologies Latin America (ISGT-LA), 2023. 

Input: Maximum Voltage

Output: Hosting Capacity

Constant Sensitivity Approach Ensemble Approach
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Model-Free V-HC – Ensemble Approach

[1]   J. Yusuf, J. A. Azzolini, M. J. Reno, “PV Hosting Capacity Estimation in Low-Voltage Secondary Networks Using Statistical Properties of AMI Data,” IEEE Innovative Smart Grid Technologies Latin America (ISGT-LA), 2023. 

Split the dataset into training and 
testing

Generate the predictors (selected 
features) and responses (sensitivity 

values) for training data

Use the AdaBoost algorithm to 
develop the model

Deploy the model for testing data 
and estimate the predicted HC 

where HC=predicted sensitivity× 
abs(1.05-Vmax)

Ensemble Approach Divided into 3 categories:
Predictor Set 1: Smart meter has all P, Q, and V measurements; so all 12 
features are used

Predictor Set 2: Smart meter has only P and V measurements; so 11 of 12 
features are selected; removing ⁄∆"

∆# (mean) 

Predictor Set 3: Smart meter has only V measurements; so 5 of 12 features are 
selected; only utilizing the  ∆V (mean, max, std), V (mean, std) 
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Model-Free V-HC - Irradiance
• Static hosting capacity worst

case assuming irradiance is
always full:

• (1.05 – max(V(t))) / dV/dP
• Timeseries Hosting Capacity

• V_withPV(t) = V(t) +
• PVsize*Irradiance(t)*dV/dP

• Increase PV size until you
reach amount of allowed
violations during the year for
V_withPV

ANSILimit

Hosting Capacity 
(19kW)

Historical AMI Data 
for a Customer
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Model-Free Discussion

32

• Promising initial results for the model-free approaches
• Significantly reduced computational time. Results were generated in minutes, where model-based results 

required multiple days of simulations
• Regression V-HC: 

• Comparable accuracy to model-based results
• Much faster than model-based approach
• Tested on two different feeder models with several different AMI datasets

• DNN V-HC: 
• Tested on multiple circuits and datasets
• More accurate when customer-transformer groupings are known
• Scalability concerns, less accurate for larger or more complex circuits

• Service Transformer Estimation:
• Potential for high accuracy
• R estimates were slightly better predictors than X estimates
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Task 3 - Develop Algorithms for 
Thermal-Constrained Hosting 

Capacity
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Thermal-Constrained Hosting Capacity (T-HC)

Two Methods:
• Parameter Estimation Approach

• Use measurements from multiple customers 
to estimate low-voltage topology and 
impedances, along with the distribution 
service transformer impedances

• Transformer impedances can then be used to 
estimate transformer size (kVA)
• K. Ashok, M. J. Reno, D. Divan, “Secondary Network Parameter 

Estimation for Distribution Transformers,” IEEE Innovative Smart 
Grid Technologies (ISGT), 2020.

• Machine Learning Approach
• Same as other slide where supervised ML 

algorithms learn to correlate timeseries data 
with hosting capacity – this time the training 
data is the thermal-constrained hosting 
capacity

Unclassified-No Sensitivities, not reviewed/approved for public release. Further dissemination by Sandia Approval Only
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T-HC Problem Statement and Solution Steps
Problem Statement

• Develop and validate data-driven algorithms to determine 
the maximum amount of solar that can be installed before 
exceeding the loading capacity of power delivery 
equipment. 

Three main steps:
1. Identify Transformer-Customer Groupings3,7,8

• Determine which customers are connected to each transformer

2. Determine the Transformer kVA Ratings6

3. Calculate the Thermal-Constrained hosting 
capacity based on the total load on the transformer and 
the power rating
• How much PV can be installed without over-loading the transformer Thermal-constrained HC

| Pg. 35
[3]    L. Liu, N. Shi, D. Wang, Z. Ma, Z. Wang, M. J. Reno, J. A. Azzolini,  “Voltage Calculations in Secondary Distribution Networks via Physics-Inspired Neural Network Using Smart Meter Data,” IEEE Transactions on Smart Grid, 2024.
[6]    J. A. Azzolini, M. J. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.
[7]    L. Blakely and M. J. Reno, “Identification and Correction of Errors in Pairing AMI Meters and Transformers,” IEEE Power and Energy Conference at Illinois (PECI), 2021.
[8]    M. Reno et al., "IMoFi - Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration Final Report," Sandia National Laboratories, SAND2022-0215, 2022.



T-HC Detailed Step Solution Form
• Similar to the V-HC algorithms, the thermal algorithms accept a range of 

input variables to accommodate different levels of data availability
• Some methods require additional GIS data6,8, (customer address or 

transformer latitude/longitude)

!" #"

Correct Predictions Prediction Accuracy
Ckt5 583 / 591 98.65%

Ckt5 w/PV 584 / 591 98.82%

[6]    J. A. Azzolini, M. J. Reno, J. Yusuf, “A 
Model-free Approach for Estimating Service 
Transformer Capacity Using Residential 
Smart Meter Data," IEEE Photovoltaic 
Specialists Conference (PVSC), 2023.
[7]    L. Blakely and M. J. Reno, “Identification 
and Correction of Errors in Pairing AMI 
Meters and Transformers,” IEEE Power and 
Energy Conference at Illinois (PECI), 2021.
[8]    M. Reno et al., "IMoFi - Intelligent Model 
Fidelity: Physics-Based Data-Driven Grid 
Modeling to Accelerate Accurate PV 
Integration Final Report," Sandia National 
Laboratories, SAND2022-0215, 2022.

[7]

[6]
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T-HC Voltage Correlation and Clustering

• The accurate number of service 
transformers in the system is not known a 
priori.

• We utilized the voltage correlation between 
customers to develop a customer clustering 
algorithm. Customers within one cluster are 
connected to the same transformer.

• Cluster adjustment and merging process 
guided the algorithm to estimate the 
transformer number based on clustering 
constraints.

Input Data: Voltage measurements from smart meters (point of 
coupling), transformer number

Pearson Correlation Coefficient 
matrix calculation

For each customer:
K-connect-neighborhood set
Bi-directional-connect-set

Generate initial Cust-DT 
connect groups 

Iteration limit 

Similarity-based Cluster 
Merging 

Potential Connectivity Evaluation

No
Yes

Final Result

Iteration-based clustering 
adjustment

[3]

[3]    L. Liu, N. Shi, D. Wang, Z. Ma, Z. Wang, M. J. Reno, J. A. Azzolini,  “Voltage Calculations in Secondary Distribution Networks via Physics-
Inspired Neural Network Using Smart Meter Data,” IEEE Transactions on Smart Grid, 2024.
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T-HC Algorithm Details

38

1. Determine kVA rating of upstream service transformer:
1. Estimate the low-side voltage of the service transformer [4]
2. Identify nearby service transformers connected to the same phase
3. Apply parameter estimation to determine the transformer’s impedance [5]
4. Use look-up table to convert transformer impedance to kVA rating [5]

2. Calculate Thermal-Constrained HC:
1. Calculate net kVA timeseries by summing customer AMI measurements
2. Subtract net kVA from kVA rating to find kVA headroom
3. Calculate T-HC from the daytime minimum kVA headroom value

!"

[4] J. Peppanen, M. J. Reno, R. J. 
Broderick, and S. Grijalva, 
"Distribution System Secondary 
Circuit Parameter Estimation for 
Model Calibration," Sandia 
National Laboratories, 
SAND2015-7477, 2015.
[5] K. Ashok, M. J. Reno, and D. 
Divan, "Secondary Network 
Parameter Estimation for 
Distribution Transformers," in 
2020 IEEE Power & Energy 
Society Innovative Smart Grid 
Technologies Conference (ISGT), 
17-20 Feb. 2020.
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Test Sets for T-HC Development

• Model Test Dataset: EPRI Secondary Topology Model and EPRI Ckt5 Model
• Input Data: One year of customer smart meter voltage measurements at 15-mins resolution.

EPRI Secondary Topology Model EPRI Ckt5 Model
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T-HC Results for Test Sets

EPRI Secondary Topology Model
Fig: Voltage correlation heatmap for EPRI ST model

Fig: Maximum complete diameter changes by cluster merging

Accuracy = number of totally identified transformers/transformer number 

• Connecting results of 46 customers to 12 transformers
• Transformer estimation Error Margin = 0
• Customer Connectivity Accuracy = 100%

Simulated Results Ground Truth
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kVA estimation example (Ckt5)

41

• Solve the linear regression problem in [5] using the first 1000 
AMI measurements to estimate the X and R values of each 
service transformer

• Compare the estimated impedances to the actual values from 
the model
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Transformers with Unknown Topology

42

• Assuming the topology was unknown, estimates of each transformer were calculated from 
“nearby” transformers on the same phase
• Geographic distance is a proxy for electrical distance; multiple estimates limit the impact 

of pairing a transformer served by a different branch

• kVA selections for each transformer were made using
• Avg. R estimate: 584/591 correct predictions (98.82% accuracy)
• Avg. X estimate: 569/591 correct predictions (96.28% accuracy)
• Best R estimate: 591/591 correct predictions (100% accuracy)
• Best X estimate: 584/591 correct predictions (98.82% accuracy)

[6] J. Azzolini, M. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data,” IEEE Photovoltaic Specialists Conference (PVSC), 2023. Under Review.



PINN Model for Transformer-Cust. Connectivity

43

Well-trained Wa, Wb

• Due to the designed structure, physics information, 
including the transformer-customer (TC) connection, can 
be learned by the “Physics-inspired Module.” 

• The simulation results of matrices Wa, Wb , which contain 
the physics information, are shown on the right.  

• According to the Wa, Wb , a TC Connectivity Identification 
method is designed as an Application of the PINN model.  

Simulation Results
• The method considers both load and voltage 

data together. 

• The method is straightforward while showing 
good performance. 



Model-free PINN Transformer Capacity Estimation

44

Objective: 
• Determine the rated capacity (in kVA) of all 

service transformers on a given radial 
distribution feeder without any topology 
information or grid models

Inputs:
• Smart meter data for all customers

• Includes historical P, Q, V measurements 
• Metadata (e.g., location, phase)

• Customer-transformer groupings
• Lookup table of known transformer types

• kVA, R, and X for each transformer type
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[5]     J. A. Azzolini, M. J. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.



Aggregation for Transformer Measurements

45
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• Apply filter to ensure uni-directional power flow from the transformer to 
the customers

• This guarantees that LV terminal voltage will be highest

• Estimate Node 1 voltage iteratively using every possible combination of 
customer pairs

• Whichever pair has the highest average estimated voltage is selected

𝑉!"#$% =
1
𝑁	&

&'%

!

𝑉& + 𝑅& + 𝑗𝑋& 𝐼(& + 𝑗𝐼)&

𝑉$ − 𝑉% = −𝑅$𝐼&$ − 𝑋$𝐼'$ + 𝑅%𝐼&% + 𝑋%𝐼'%

[5]     J. A. Azzolini, M. J. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.
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Pairwise Estimation of Service Transformer Impedance

46

• The same parameter estimation approach can be applied 
to calculate the service transformer R and X values
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• Since the topology is unknown, multiple impedance 
estimates are generated for the target transformer 
by iteratively pairing it with nearby transformers 
(physically close)

10 Estimates

17 Estimates

[5]     J. A. Azzolini, M. J. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.
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Determination of Service Transformer Capacity

47

[5]     J. A. Azzolini, M. J. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.

• The algorithm then uses a weighted voting scheme 
to combine the multiple estimates into a single kVA 
prediction, where the best matching R and X values 
from the lookup table receives a vote

𝐸𝑟𝑟𝑜𝑟	 = min 𝑅()* − 𝑅+,,-./ + 𝑋()* − 𝑋+,,-./

• The votes are then weighted according to the RMSE of 
the linear regression models

𝑊𝐹* 	=
1/(𝑅𝑀𝑆𝐸*)

𝑠𝑢𝑚 1/𝑅𝑀𝑆𝐸+

Distance from 
Target (ft) Rest (Ω) Xest (Ω) Predicted ID 

(Table I) WF (8)

375 0.0396 0.0566 3 0.107
486 0.0561 0.0291 4 0.046
529 0.0576 0.0300 4 0.042
540 0.0525 0.0361 3 0.050
544 0.0525 0.0343 3 0.057
587 0.0596 0.0227 5 0.038

• After tallying the votes from the table and the 
remaining 11 estimates (not shown):
• Transformer Type 3 = 79% 
• Transformer Type 4 = 14%
• Transformer Type 5 = 7%

• The algorithm was correct since the target 
transformer was Type 3



Thermal Hosting Capacity Summary

48

[5]     J. A. Azzolini, M. J. Reno, J. Yusuf, “A Model-free Approach for Estimating Service Transformer Capacity Using Residential Smart Meter Data," IEEE Photovoltaic Specialists Conference (PVSC), 2023.

• Overall, the algorithm was accurate regardless of existing PV penetration and robust to noise
• (Meter class 0.5 means all measurements were within ±0.5% of actual value)
• Class 0.5 corresponds to lowest accuracy allowed by ANSI C12.1-2022

• Errors were distributed across different transformer types

• Total predicted cumulative thermal capacity was accurate within 1.01%

!" #"
Correct Predictions Prediction Accuracy

Ckt5 583 / 591 98.65%
Ckt5 w/PV 584 / 591 98.82%



Subtask – Timeseries Analysis of 
Hosting Capacity
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Timeseries Modeling Introduction
• First, determine the largest magnitude of real power (kW) injections that can 

be accommodated at each time point

• This step can be accomplished via model-based or model-free methods

• For this example, the voltage constraint was often the most limiting factor, 
but some days were limited by the thermal constraint
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Timeseries Modeling Approach
• We can simply look at the minimum of the 

two plots

• This is the upper limit of kW injections for 
any DER throughout the whole year

• To create a hosting capacity map, we have 
to distill this time-series down to a single 
value

• The most conservative approach would be 
to use the absolute min value to represent 
DER hosting capacity

• Absolute min = 2.26 kW @ 4:30 am in this case

min
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Timeseries Approach Provides More Realistic Limits

• Taking the absolute min value is likely 
overly conservative for PV HC

• We can still model the PV output 
conservatively in several ways (e.g., 
exclude losses, clear-sky, assume sun-
tracking)

• The more info we have about the PV 
system means we can reduce the number 
of “worst-case” parameters, and get a 
more accurate HC value

!"#$%&%'$()
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Applying Timeseries Analysis to Full Circuit

• Repeating this process for all locations in 
modified version of EPRI Ckt5 using the 
model-based HC approach:

• Mean(HC_absoluteMin) = 0.40 kW
• Mean(HC_sunrise-sunset) = 3.26 kW
• Mean(HC_dual) = 4.04 kW

• Mean(HC_daytimeMin) = 6.37 kW
• Mean(HC_fixed) = 7.55 kW

• In practice, maybe conservative approach is 
fine for general HC maps but bringing in more 
details is needed for interconnections
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Task 4 - Integrate Algorithms into 
an OMF Application
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Open Modeling Framework – https://www.omf.coop

• Free and open source electric utility modeling 
software

• Built by the co-ops and the US Department of 
Energy (OE, EERE, ARPA-E)

• Offers models to determine:

• Benefits of energy storage for arbitrage, peak 
demand reduction and asset upgrade deferral

• Cost and financing options for utility-scale 
solar

• Cashflow and engineering impacts of 
distributed generation

• Full distribution dynamic powerflow simulation 
(for the ambitious)

• Users from 176 organizations (utilities, vendors, 
universities) as of June 2017.



OMF Integration – Hosting Capacity
Users can create an 

instance of the 
model in the OMF

Model Inputs for 
Model-Free HC 

Standard Advanced 
Inverter Default 

Inputs

Model-Based Inputs Downline Load 
Algorithm

(needs circuit to run)

*Current placeholders 
for future functionality
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Model-Free Thermal 
Hosting Capacity 

Arguments

Circuit File Input



Model-Free V-HC Results Display

Distribution of 
MoHCA hosting 

capacities.

Model-Free Full 
Raw Data Table

Breakdown of MoHCA 
voltage versus 
thermal limits

Runtime Tracking
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Hosting Map Generation and Export

Model-Based Circuit Map 
Display. Color coded based 

on hosting capacity

Model-Based 
Bar Graph

Model-Based Full 
Raw Data Table

Model-Based 
Runtime
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Downline Load Comparison Option

Downline Load 
Runtime and Full 
Raw Data Table

Circuit Display with 
Downline Load 

Results

Raw Files for 
Download | Pg. 59



DNN HC – Iowa State Results Display

Model Creation 
with Iowa State 
algorithm option

Iowa State Algo: 
Runtime and 

distribution outputs

Iowa State Algo: 
Output by bus 
visual and data 

table

Model-free PINN-based algorithm
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Transformer Pairing and Phase ID Background

• Accurate information regarding customer-to-
transformer groupings and customer phase 
connections can improve the performance of the 
MoHCA algorithms

• Data-driven algorithms for both tasks have been 
integrated with OMF

Customer-to-Transformer Mapping

Phase Identification
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OMF Integration – PhaseID Results

PhaseID Model 
Inputs

A confusion matrix, showing 
any meters whose label did 
not match the predicted true 

phase in the off-diagonal 
entries

PhaseID Outputs with 
Original and Predicted 

Correct Phases

An overview of the 
confidence scores for each 
of the predictions, and the 
percentage of meters that 

change
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OMF Integration – Transformer Pairing Results

Results summary 
based on customer ID 
and corrected mapping

OMF Model inputs:
AMI Data

Customer to Transformer 
Pairing Analysis
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Task 5 - Develop Algorithms for 
Assessing the Impact of Advanced 

Inverter Operation Modes

| Pg. 64



Evaluating Advanced Inverter Functions

Background / Methodology
• Advanced inverter functions like 
Volt-VAR are required by IEEE 
1547 and becoming standardized 
by many utilities/PUCs to:
• Mitigate voltage & thermal issues
• Prevent excess reverse power flows
• Increase PV hosting capacity (HC)
• Improve the dispatchability of PV 
• Offset the need for grid upgrades 

1.  J. A. Azzolini, M. J. Reno, J. Yusuf, S. Talkington, and S. Grijalva, "Calculating PV Hosting Capacity in Low-Voltage Secondary Networks Using Only Smart Meter Data," in IEEE Innovative Smart Grid Technologies NA, 2023.

Smart 
Meter
Data

P

Q

V

Data-Driven 
Evaluations

15 kW

Move 
to Next 
Meter

Proposed 
Framework

Advanced Inverter 
Control Settings

(e.g., one year @ 
15-min resolution)
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Prior Work to Future Goals
• We built on prior work1 to include the capability of evaluating 

advanced inverter control functions
• Constant power factor (PF) and autonomous Volt-VAR
• Framework can be applied to any function that manipulates PV real 

and reactive power outputs
• Applicable to any inverter-based DER, such as energy storage or 

electric vehicles
• The goal of out methods is to evaluate the effects on PV HC, not 

determining optimal settings

Volt-VAR

Volt-WATT

Minimum Q 
capability 



Evaluating Advanced Inverter Functions

Methodology
The main steps are to:
1. Load in the yearlong time-series 

data from a smart meter and 
calculate additional variables 

2. Filter the data and apply the 
surface fit to extract the coefficients 
of voltage changes due to real and 
reactive power changes, σP and σQ

3. Use those coefficients for DER 
impact analyses, such as voltage-
constrained hosting capacity 
(VCHC)

!"#A"

%C#'EF*E'#"#+E
,-E.-EL
0#12P1#"Q+
,R-E!,-E!.-E
!L-E!,R

!"CS

78"A#2"EV,E#*'EV.E0CQ::F2FQ*";
<Q=C>Q+
• !=#11E!,E>#1PQ;
• !=#11E!,RE>#1PQ;
• %#A?QE!LECP"1FQA;

@SS1AE;PA:#2QE:F"
P;F*?EQBCEaEc

@SS1AEV,E#*'EV.E2CQ::F2FQ*";E
"CE2#12P1#"QE>C1"#?QEF=S#2";E
C:E#*AE,ECAE.ECP"SP"E:AC=E

"dQE,LE;A;"Q=E

ΔV	 = 𝜎0×Δ𝑃 + (𝜎1×Δ𝑄) (1)
Blue dots are one year of 
filtered smart meter data
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Constant Power Factor Mode Results

68

• The maximum PV kW injections (not 
causing 1.05 Vpu) were calculated using 
both methods

• As anticipated, the capacitive PF resulted 
in the lowest values of kWMax 

• More extrapolation led to more errors, but 
more accurate at times when PV is most 
limited

• The data-driven method was able to 
determine the HC within 1 kW of the 
model-based results for all cases

PV PF HC
Model-based

HC
Data-Driven Error

PF = 0.9 capacitive 3.24 kW 3.18 kW -0.06 kW

PF = 1.0 unity 4.75 kW 4.58 kW -0.17 kW

PF = 0.9 inductive 9.04 kW 8.16 kW -0.88 kW



Model-Free HC Leads to Large Performance Improvements 

• For all 1379 customer locations, the average VCHC results were 
[4.93, 6.26, 8.89] kW, which correspond to inverter ratings of  [5.19, 
6.26, 9.36] kVA for the [+0.95, 1.00, -0.95] PFs

• Compared to the model-based results, the mean absolute errors 
(MAEs) were [0.25, 0.27, 1.62] kW

• The proposed framework took <6 minutes to calculate all results, 
whereas the model-based results required days of simulation time 
for each PF case using the same computer

| Pg. 69



Similar Results for Volt-VAR Mode Inverters
• The average VCHC results were [7.01, 7.80] kW, which 

correspond to inverter ratings of  [7.06, 8.00] kVA, with    
MAEs of [0.56, 0.72] kW

• The proposed framework took <4 minutes to calculate all 
results, whereas the model-based results required days of 
simulation time for each Volt-VAR case using the same 
computer
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Advanced Inverters Greatly Increased Hosting Capacity

71

• Compared to unity PF, grid-support functions can significantly increase HC
• Under default settings, only minimal impact to annual energy yields (i.e., no 

significant curtailment of real power)

• Ultimately, the user will be able to toggle these functions to see the impacts on 
HC and PV energy yields

PV inverter generation curtailment (compared to the 
total PV generation) under different control modes

HC increases when applying different control modes



Task 6 - Engage Project 
Stakeholders, Result Dissemination, 

and Outreach
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Industry Advisory Board Formed

73

Name Organization
Jared Weeks United Power Colorado

Brian Lydic
Interstate Renewable Energy 
Council (IREC), Albany, NY

Shibani Ghosh NREL
Andrea Pinceti Virginia Dominion Energy, Inc.
Jon Hawkins PNM Resources, Albuquerque, NM

Jeremiah Miller
Solar Energy Industries Association, 
Washington, DC

Jim Cross Yampa Valley Electric Association
Jeffrey Wadsworth Poudre Valley REA
Jim Glass EPB Chattanooga
Francis Therrien Eaton, CYME International T&D
Joshua Noel Poudre Valley REA
Jakob Lowman Southside Electric Cooperative
Chuck Gill Owen Electric Coop, Kentucky

Dion Cooper
Southwest Arkansas Rural Electric 
Administration

Philip Lim Middle Tennessee Electric Coop
Kelsey Gustainis Tri-County Electric Coop Texas
Eugene Hamrick Rappahannock Electric Coop
Brian Swart Horry Electric Coop
Shaun Vester Coles-Moultrie Electric Coop
Anthony J. Capobianco Berkeley Electric Cooperative
Brett Kinlaw Lumbee River Electric Coop
Lacy Frazier Northeast Oklahoma Electric Coop
Quentin Rogers Powder River Energy Corporation
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• Meetings ran 2022 through 2024
• Approx. 35 individuals make up the advisory 

board, representing electric utility staff, research 
organizations, and vendors



Stakeholders

• Who are the relevant stakeholders in your area?
• Relevant stakeholders include utilities, co-ops, software vendors, and solar 

developers
• We have established (and met with) an industry advisory board (IAB)

• Members include IREC, EPRI, SEIA, CYME, NREL, PNM, EPB Chattanooga, and 18 co-
ops (e.g., Poudre Valley REA, Owen Electric, Lumbee River, Rappahannock, …)

• The work has also been presented through conferences (IEEE T&D) and workshops 
(GridTECH Connect)

• What reactions have you heard from stakeholders about outputs or findings?
• We continue to hear that conducting conventional hosting capacity analyses are challenging 

given the status of utility models and the pace of interconnection requests leading to long 
queues.

• Utilities are interested in the ability to run algorithms locally due to data privacy concerns
• Lots of interest in leveraging these algorithms 
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United Power Testing

United Power Test System
8 different feeders of varying 
sizes with different types and 
numbers of customers
Feeders 6, 7, and 9 are much 
smaller than other feeders
Feeder 4 smaller than 2, 3, 5, and 
8
Feeder 9 has no secondary
We focused our modeling and 
analysis on Feeder 3 
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United Power Testing
• Most feeders had no 

violations
• Over-loaded transformers in 

feeders 5 and 8
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• Under-voltages on feeder 5
• Each feeder model was reduced 2-14 times by merging neighboring 

lines to minimize the number of buses while maintaining the topology 
• Cuts down on computational time and are mathematically equivalent



United Power Testing

Feeder 3
Incorporated load locations from 
new models, but many line codes 
and line ratings did not convert (just 
zeros)
Used secondary star approach to 
reduce excess lines and add line 
length diversity
Loads modified to connect across 
240V LV terminals of split-phase 
transformer (instead of splitting each 
load in half on each leg)
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United Power Testing
Feeder 3
304 single-phase service transformers

277 with downstream loads that had AMI data

Low-voltage networks from United Power are 
included in the analysis
1,563 residential customers with AMI data
Each customer has smart meter data 

P, Q, and V measurements @ 15-min resolution
Most customers have a full year of 
measurements, but some are missing parts of 
the year
Could be due to meter outages, new customers 
being added, inactive customers that were 
removed
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Validation Methodology

HCA conducted on Feeder 3 for algorithm validation
Modifications made to align the model-based and MoHCA 
inputs, that way we can quantify algorithm errors
Use actual P and Q from smart meters to model the loads, 
then run yearlong quasi-static time-series (QSTS) simulation 
to calculate the synthetic voltages
This means that the HCA results may not be representative 
of field results
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HCA Methodology, Model-based
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Model-based Locational HCA:
1. Run yearlong quasi-static time-

series (QSTS) simulation without 
PV 

a. Record customer voltages and 
transformer loading time-series

2. Add PV to any customer premise

3. At t=0: 
a. Iteratively increase PV size, solving 

the power flow each time
b. Record max PV size w/o any 

voltage or thermal violations

4. Move to next time point (e.g., 
t=t+15 minutes) if there is one

a. Repeat steps 3a and 3b

5. Repeat steps 2 through 4 for all 
customer premises 



HCA Results– MoHCA vs Model-based

Voltage-Constrained HC (VCHC)
1232/1563 locations (78.82%) were accurate 
within 10% of model-based results
Map on the right shows the difference between 
MoHCA and model-based HCA results
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HCA Results– MoHCA vs Model-based
TCHC if Service Transformer Sizes are known:
Assuming customer-transformer groupings are accurate, just take the difference between total existing load on the 
transformer (i.e., sum smart meter data) and max capacity
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Impact and Innovation
• High Impact - Leveraging >$1 billion U.S. investment in smart meters provides a very high 

value/cost tradeoff for multiple stakeholders (utility, solar developer, customers, etc.)
• Since the proposed approach directly incorporates data analytics and does not require any power

flow analyses to be performed, it has a variety of advantages over existing methods:
• Reduced complexity. The proposed approach does not require any detailed (often error-prone) grid 

models and can be independently applied to any location with a smart meter.
• Improved speed and scalability. Taking a data-driven approach to calculate solar HC avoids 

thousands of power flow solutions, dramatically reducing computation times. Faster speed results in 
hosting capacity maps updating more often with less stale data for stakeholders

• Added functionality. Machine learning and data analytics techniques can offer additional insights 
into the locational impacts and benefits of advanced PV inverters.

• Enhanced accuracy. Using field data provides better visibility into potential PV systems and 
timeseries hosting capacity analysis provides insight into operations during the entire year instead of 
just extreme points

• Provide actionable intelligence for developers to size and site PV
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Next Steps

• Next Steps
• Improving the equipment constraint modeling for cases where no information is available about 

transformer connections

• What do you wish you could do with more funding?
• Build on this work to facilitate interconnection screening and queue management
• We get some variation of this question a lot: “Can this tool be used for interconnections?”
• In theory, we can use info from interconnection requests to model the DER output, and leverage the 

PINN-based methods to determine the impact of that system on neighboring customer locations

• Biggest Challenge and Achievement of the project so far? 
• Biggest challenge was receiving utility models/datasets, then converting/cleaning them to be able to 

test our algorithms on them
• Biggest achievement has been meeting all the accuracy metrics and project milestone on schedule

| Pg. 84



Call for Data, Hosting Capacity Analysis

• Algorithms are ready, and we'd like to calculate hosting capacity for your systems!
• We would need, for one circuit on your system:

• Historical AMI data, ideally about a year’s worth but more is fine, including the meter 
IDs, times of the readings (hourly or 15 minute), voltage values, kW values and (if you 
have them) kVAR values.

• The Windmil model for that circuit (so we can benchmark the results against more 
traditional methods). If you can send the OpenDSS version that would be ideal (File > 
Export… and then choose the OpenDSS option), but you can also send us the native
• .wm + eqdb files and we can extract the OpenDSS model.

• Sandia and NRECA have NDAs we can execute to keep your data secure.
• Interested? Please email david.pinney@nreca.coop.
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Contacts

• Sandia National Laboratory
• Dr. Matthew Reno, principal investigator, mjreno@sandia.gov
• Dr. Joseph Azzolini, research lead, jazzoli@sandia.gov
• Dr. Jubair Yusuf, researcher, jyusuf@sandia.gov 

• NRECA
• David Pinney, project coordinator, david.pinney@nreca.coop
• Jennifer Thakkar, software engineer, jennifer-thakkar@nreca.coop 

• Iowa State
• Professor Zhaoyu Wang, wzy@iastate.edu
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