Report No. T153700-33107
GUIDE FOR TRANSMISSION LINE FOUNDATIONS WITH LEAST IMPACT TO THE ENVIRONMENT

Contractor:
Peter Kandaris, P.E., DiGioia Gray, Inc.
Tempe, Arizona, USA
Foundations with Least Impact to the Environment

Objectives of Guidelines

• Develop decision making processes that aid in the selection of transmission line foundation alternatives which best meet the economic, engineering, and environmental needs of the project.

• Provide methodology to organize information and to perform a rational assessment that arrives at an economical foundation alternative for a project producing the least environmental impact.

• Develop foundation selection decision-making criteria;
 • Each foundation type has unique design & construction characteristics.

• Provide guidance regarding foundation design methods.

• Allow engineering judgment to be incorporated into the process to recognize the unique nature of each project.
Foundations with Least Impact to the Environment

Scope of Project

• Identify factors and processes related to transmission line foundation design and construction in environmentally sensitive areas.

• Assess the environmental impacts of various transmission line foundation designs and other factors involved in foundation construction in sensitive environments.

• Understand the application and use of various traditional and alternate transmission line foundation technologies.

• Compare the environmental effects, remediation needs, and costs of various transmission line foundation options.

• Apply information to select, specify, and contract various alternative transmission line foundation design alternatives located in environmentally sensitive areas.
Foundations with Least Impact to the Environment

Background

• Case studies indicate that sensitive environments can be generally categorized as follows:
 ➢ Wet environments (wetland, waterway, coast, estuary);
 ➢ Rough terrain (mountainous, desert); and
 ➢ Frozen ground (seasonal frozen ground, permafrost).

• Access mitigation for traditional foundations is used to construct transmission line foundations in just under 40% of published case histories.

• Alternate foundations (e.g. micropiles, vibratory caissons, and helical piles) along with minimally invasive access methods (helicopters, barges, boats, marsh buggies, light/small equipment, etc.) are used in the remaining.

• 85% of unpublished case studies indicate access mitigation as the preferred alternative for foundation construction in sensitive environments.

• Few case histories of comparative foundation assessments are available.
Foundations with Least Impact to the Environment

Identify - Decision Selection Criteria

- Site Access in Sensitive Environments
- Foundation Design Considerations
 - Subsurface Limitations / Feasibility;
 - Geotechnical Investigation Needs;
 - Groundwater Impacts; and
 - Material Fabrication & Delivery.
- Foundation Construction Controls
 - Schedule Impacts/Sensitivity – includes contractor availability;
 - Installation/Construction Equipment;
 - Foundation Materials – quantity, variety;
 - Site Impacts on Construction – corrosion, temperature; and
 - Construction Impact on Site – Noise, Dust, Vibration.
- Risk & Cost
Foundations with Least Impact to the Environment

Assess – Traditional Foundations

Drilled Shaft

- Needs driving access or barge on water;
- Can construct in nearly any soil/gw condition;
- Good subsurface data needed;
- Concrete & reinforcing steel;
- Takes time to construct; and
- Flexible sizes & high capacity loads.

Direct Embedment

- Needs driving access or barge on water;
- Can construct in nearly any soil condition (groundwater can create challenges);
- Limited geotech data ok;
- Backfill material can vary;
- Generally rapid construction; and
- Size/capacity limited by pole.
Foundations with Least Impact to the Environment

Assess – Traditional Foundations

- Needs minimal road access;
- Best suited with soil; can use in rock (groundwater can create challenges);
- Good subsurface data needed;
- Concrete & reinforcing steel;
- Minimal construction time; and
- Requires large excav/backfill area.

- Needs minimal road access;
- Best suited with soil; can use in rock (groundwater can create challenges);
- Good subsurface data needed;
- Backfill material can vary;
- Moderate time to assemble; quick install; and
- Requires large excav/backfill area.
Foundations with Least Impact to the Environment

Assess – Traditional Foundations

- Needs driving access or barge on water;
- Can construct in gw; refuses in dense soil/rock;
- Limited geo data ok; can be proof tested;
- Typically steel elements;
- Rapid installation;
- Flexible sizes & high capacity loads; and
- Needs transfer plate or cast concrete.

- Small; installs with minimal access;
- Can construct in nearly any soil condition;
- Limited geo data ok; can be proof tested;
- Typically steel elements; can grout;
- Generally rapid installation; and
- Tension only element; use with limited types of structures.
Foundations with Least Impact to the Environment

Assess – Alternative Foundations

- Ideal for restricted access sites;
- Best in rock but can construct in nearly any soil/gw condition;
- Limited geo data ok; can be proof tested;
- Small volume of grout and bars;
- Rapid installation; and
- Needs transfer plate or cast concrete.

- Suitable for sites with limited access;
- Best in soft soils; ideal for high gw;
- Limited geo data ok; can be proof tested;
- Numerous vendors; self-contained;
- Capacity depends on subsurface;
- Needs transfer plate or cast concrete; and
- Generally rapid construction.
Foundations with Least Impact to the Environment

Assess – Alternative Foundations

- Ideal for restricted access sites;
- Used in rock or cemented soils;
- Requires good estimate of rock properties, but can be proof tested;
- Small volume of grout and bars;
- Generally slow installation; and
- Can achieve very high capacities.

- Suitable for sites with limited access;
- Can construct in gw; refuses in dense soil/clay/rock;
- Good subsurface data needed;
- No other materials typically needed;
- Rapid installation; and
- Design poorly understood.
Foundations with Least Impact to the Environment

Assess – Mitigation Strategies

• Avoidance of Sensitive/Difficult Environments
 ➢ Primary strategy used to limit impacts;
 ➢ Increase span length; and
 ➢ Reroute alignment.

• Activity Minimization
 ➢ Minimize grading/road building;
 ➢ Construct spur roads;
 ➢ Restricted access (seasonal or temporal);
 ➢ Limit equipment size & traffic; and
 ➢ Alternative access (helicopter, boat, barge, marsh buggy, ATV, foot).

• Protection at Sensitive Sites
 ➢ Mats and geotextiles;
 ➢ Countermeasures / BMP’s; and
 ➢ Ice roads / frozen ground.
Foundations with Least Impact to the Environment

Compare - Rational Model

- Organization information is critical for performing a logical assessment that arrives at the optimal foundation alternative.
- Rational model → step-by-step process assigning values to all decision criteria.

- Goal: select one or more foundation option with the highest likelihood of successfully meeting project objectives.
Foundations with Least Impact to the Environment

Flowcharts & Matrixes

• Decision-Making Process Flowchart
 ➢ Application of the Rational Model;

• Environmental Impact Factor Flowcharts (numerical values)
 ➢ Design Considerations;
 ➢ Site Access; and
 ➢ Construction Controls.

• Decision Matrix
 ➢ Define Environment;
 ➢ Identify Criteria (tabular information for each foundation alternative);
 ➢ Evaluate Alternatives (rank each impact factor for all foundation types);
 ➢ Select Importance Factor, i.e. risk (I – average; II – elevated; III – high);
 ➢ Evaluate Alternatives (numerical comparison); and
 ➢ Select Feasible Design Alternatives.
Foundations with Least Impact to the Environment

Foundation Evaluation & Design

• Although feasible, the highest ranked option(s) may not necessarily be the least costly.

• Preliminary design and cost estimation should be performed for the most feasible options to determine the best course of action.

• Traditional Foundation Assessment
 ➢ Prepare foundation design;
 ➢ Estimate foundation cost; and
 ➢ Develop project schedule.

• Alternative Foundation Assessment
 ➢ Prepare preliminary foundation designs/specs;
 ➢ Bid multiple alternatives – have contractors provide costs/schedules; and
 ➢ Integrate “value engineering” – contractor/owner jointly perform final design.
Foundations with Least Impact to the Environment

Conclusions

- Environmental impacts can be mitigated by a combination of good planning, design, and construction practices.
- Geotechnical investigations help determine subsurface conditions that are conducive to the application of each foundation alternative.
- Improved access practices offer the best opportunity to minimize environmental impacts.
- Organizing relevant information is critical to the performance of a logical assessment that arrives at the best foundation alternative for the project.
 - Flowcharts to guide the process;
 - Criteria to categorize and quantify options and impacts; and
 - Matrixes to assemble information and provide a quantitative comparison.
- Subjectivity (engineering judgment) in combination with rational methods provide an excellent tool for making good decisions.
Foundations with Least Impact to the Environment

Application & Future Work

• Application
 - Methods provided can be used by project owners to assess the most favorable alternatives.
 - This is best done early in the project – starting with the planning and land acquisition phase of the project.
 - This guide provides a step-by-step approach to foundation assessment.

• Future Work
 - Trial cases are needed for the evaluation of optimized alternatives – transmission foundation assessment is ripe for value engineering.
 - Vibratory caissons design and performance requires more R&D.
 - Formal guide specifications for electric system foundations should be developed – presently, most are borrowed from the transportation sector.